
topics
induction + recursion

lists
unification

Tutorium to Introduction to AI, 2nd week -
Nicolas Höning

Nicolas Höning

April 27, 2006

Nicolas Höning Tutorium to Introduction to AI, 2nd week - Nicolas Höning

topics
induction + recursion

lists
unification

induction + recursion
induction vs deduction
An example: the young gauss

lists
lists in Prolog

unification

Nicolas Höning Tutorium to Introduction to AI, 2nd week - Nicolas Höning

topics
induction + recursion

lists
unification

induction vs deduction
An example: the young gauss

induction vs deduction

I deduction is what you did in the logic course

I deductive reasoning infers no conclusion that is more general
than the premises a (famous) example:
All men are mortal.
Socrates is a man.
Therefore Socrates is mortal.

I inductive reasoning infers the universal from the particular An
example:
All observed crows are black.
therefore
All crows are black.

Nicolas Höning Tutorium to Introduction to AI, 2nd week - Nicolas Höning

topics
induction + recursion

lists
unification

induction vs deduction
An example: the young gauss

induction vs deduction

I deduction is what you did in the logic course

I deductive reasoning infers no conclusion that is more general
than the premises a (famous) example:
All men are mortal.
Socrates is a man.
Therefore Socrates is mortal.

I inductive reasoning infers the universal from the particular An
example:
All observed crows are black.
therefore
All crows are black.

Nicolas Höning Tutorium to Introduction to AI, 2nd week - Nicolas Höning

topics
induction + recursion

lists
unification

induction vs deduction
An example: the young gauss

induction vs deduction

I deduction is what you did in the logic course

I deductive reasoning infers no conclusion that is more general
than the premises a (famous) example:
All men are mortal.
Socrates is a man.
Therefore Socrates is mortal.

I inductive reasoning infers the universal from the particular An
example:
All observed crows are black.
therefore
All crows are black.

Nicolas Höning Tutorium to Introduction to AI, 2nd week - Nicolas Höning

topics
induction + recursion

lists
unification

induction vs deduction
An example: the young gauss

Now what does Prolog do?

I I cite the lecture:
”Recursive (Prolog) programs can be viewed as their own
correctness proof!”

I this says the following:
you formulate your program inductively, and Prolog will try to
proof it deductively.
You make an assumption about the search Space, and Prolog
will explore it.

I so let’s think inductively.

Nicolas Höning Tutorium to Introduction to AI, 2nd week - Nicolas Höning

topics
induction + recursion

lists
unification

induction vs deduction
An example: the young gauss

Now what does Prolog do?

I I cite the lecture:
”Recursive (Prolog) programs can be viewed as their own
correctness proof!”

I this says the following:
you formulate your program inductively, and Prolog will try to
proof it deductively.
You make an assumption about the search Space, and Prolog
will explore it.

I so let’s think inductively.

Nicolas Höning Tutorium to Introduction to AI, 2nd week - Nicolas Höning

topics
induction + recursion

lists
unification

induction vs deduction
An example: the young gauss

Now what does Prolog do?

I I cite the lecture:
”Recursive (Prolog) programs can be viewed as their own
correctness proof!”

I this says the following:
you formulate your program inductively, and Prolog will try to
proof it deductively.
You make an assumption about the search Space, and Prolog
will explore it.

I so let’s think inductively.

Nicolas Höning Tutorium to Introduction to AI, 2nd week - Nicolas Höning

topics
induction + recursion

lists
unification

induction vs deduction
An example: the young gauss

gauss(X,Y): An example

I As a little kid, Carl Friedrich Gauss was asked to add up all
numbers from 1 to hundred (so the teacher could read the
newspaper)

I After a few minutes he came up with this formula:

x∑
i=0

i =
x

2
(x + 1)

I some of you might know how to proof this formula by
induction:

1. state a base case: for example: it holds for x = 0
2. assume it holds for all x > 0
3. proof that it holds for x + 1 IF it holds for x

Nicolas Höning Tutorium to Introduction to AI, 2nd week - Nicolas Höning

topics
induction + recursion

lists
unification

induction vs deduction
An example: the young gauss

gauss(X,Y): An example

I As a little kid, Carl Friedrich Gauss was asked to add up all
numbers from 1 to hundred (so the teacher could read the
newspaper)

I After a few minutes he came up with this formula:

x∑
i=0

i =
x

2
(x + 1)

I some of you might know how to proof this formula by
induction:

1. state a base case: for example: it holds for x = 0
2. assume it holds for all x > 0
3. proof that it holds for x + 1 IF it holds for x

Nicolas Höning Tutorium to Introduction to AI, 2nd week - Nicolas Höning

topics
induction + recursion

lists
unification

induction vs deduction
An example: the young gauss

gauss(X,Y): An example

I As a little kid, Carl Friedrich Gauss was asked to add up all
numbers from 1 to hundred (so the teacher could read the
newspaper)

I After a few minutes he came up with this formula:

x∑
i=0

i =
x

2
(x + 1)

I some of you might know how to proof this formula by
induction:

1. state a base case: for example: it holds for x = 0
2. assume it holds for all x > 0
3. proof that it holds for x + 1 IF it holds for x

Nicolas Höning Tutorium to Introduction to AI, 2nd week - Nicolas Höning

topics
induction + recursion

lists
unification

induction vs deduction
An example: the young gauss

recursion

I this is what we do (and what induction is all about):
I think of a base case which is the most simple case imaginable

(i.e. x = 0)

I specify the transition from some other case to the next simpler
one

I Prolog will then try to deductively proof that each case can
be reduced to that most simple case then. It does this by
applying the transition recursively until the simple case is
reached.

Nicolas Höning Tutorium to Introduction to AI, 2nd week - Nicolas Höning

topics
induction + recursion

lists
unification

induction vs deduction
An example: the young gauss

recursion

I this is what we do (and what induction is all about):
I think of a base case which is the most simple case imaginable

(i.e. x = 0)
I specify the transition from some other case to the next simpler

one

I Prolog will then try to deductively proof that each case can
be reduced to that most simple case then. It does this by
applying the transition recursively until the simple case is
reached.

Nicolas Höning Tutorium to Introduction to AI, 2nd week - Nicolas Höning

topics
induction + recursion

lists
unification

induction vs deduction
An example: the young gauss

gauss(X,Y) in Prolog code

I So let’s do this for Prolog. We’ ll make up a predicate
gauss(+X,+Y). What is the most simple case?

I gauss(0,0).

I And now the transition. What do we need to do if we have a
case that is just a little more difficult and we want to reduce it
to our base case?

I simply substract X from Y and then decrement X

I gauss(X,Y) :-
X1 is X - 1,
Y1 is Y - X,
gauss(X1,Y1).

important: this program works only when both parameters
are instantiated (that is said by the ”+” in the declaration)!

Nicolas Höning Tutorium to Introduction to AI, 2nd week - Nicolas Höning

topics
induction + recursion

lists
unification

induction vs deduction
An example: the young gauss

gauss(X,Y) in Prolog code

I So let’s do this for Prolog. We’ ll make up a predicate
gauss(+X,+Y). What is the most simple case?

I gauss(0,0).

I And now the transition. What do we need to do if we have a
case that is just a little more difficult and we want to reduce it
to our base case?

I simply substract X from Y and then decrement X

I gauss(X,Y) :-
X1 is X - 1,
Y1 is Y - X,
gauss(X1,Y1).

important: this program works only when both parameters
are instantiated (that is said by the ”+” in the declaration)!

Nicolas Höning Tutorium to Introduction to AI, 2nd week - Nicolas Höning

topics
induction + recursion

lists
unification

induction vs deduction
An example: the young gauss

gauss(X,Y) in Prolog code

I So let’s do this for Prolog. We’ ll make up a predicate
gauss(+X,+Y). What is the most simple case?

I gauss(0,0).

I And now the transition. What do we need to do if we have a
case that is just a little more difficult and we want to reduce it
to our base case?

I simply substract X from Y and then decrement X

I gauss(X,Y) :-
X1 is X - 1,
Y1 is Y - X,
gauss(X1,Y1).

important: this program works only when both parameters
are instantiated (that is said by the ”+” in the declaration)!

Nicolas Höning Tutorium to Introduction to AI, 2nd week - Nicolas Höning

topics
induction + recursion

lists
unification

induction vs deduction
An example: the young gauss

gauss(X,Y) in Prolog code

I So let’s do this for Prolog. We’ ll make up a predicate
gauss(+X,+Y). What is the most simple case?

I gauss(0,0).

I And now the transition. What do we need to do if we have a
case that is just a little more difficult and we want to reduce it
to our base case?

I simply substract X from Y and then decrement X

I gauss(X,Y) :-
X1 is X - 1,
Y1 is Y - X,
gauss(X1,Y1).

important: this program works only when both parameters
are instantiated (that is said by the ”+” in the declaration)!

Nicolas Höning Tutorium to Introduction to AI, 2nd week - Nicolas Höning

topics
induction + recursion

lists
unification

induction vs deduction
An example: the young gauss

gauss(X,Y) in Prolog code

I So let’s do this for Prolog. We’ ll make up a predicate
gauss(+X,+Y). What is the most simple case?

I gauss(0,0).

I And now the transition. What do we need to do if we have a
case that is just a little more difficult and we want to reduce it
to our base case?

I simply substract X from Y and then decrement X

I gauss(X,Y) :-
X1 is X - 1,
Y1 is Y - X,
gauss(X1,Y1).

important: this program works only when both parameters
are instantiated (that is said by the ”+” in the declaration)!

Nicolas Höning Tutorium to Introduction to AI, 2nd week - Nicolas Höning

topics
induction + recursion

lists
unification

induction vs deduction
An example: the young gauss

some more stuff to take care of

I the program needs all parameters due to the calculations:
When you do not know X, and you don’t know X1, the term
X1isX − 1 has infinitely many solutions.
So all this problem is useful for (besides discussing induction)
is checking that some X indeed yields some Y. We’ll extend it
next week.

I to stop Prolog from running to negative infinity, we add
another line on top of the program (you don’t need to do stuff
like that for now):
gauss(-1,) :- !, fail.
gauss(0,0).
gauss(X,Y) :-

X1 is X - 1,
Y1 is Y - X, gauss(X1,Y1).

Nicolas Höning Tutorium to Introduction to AI, 2nd week - Nicolas Höning

topics
induction + recursion

lists
unification

induction vs deduction
An example: the young gauss

some more stuff to take care of

I the program needs all parameters due to the calculations:
When you do not know X, and you don’t know X1, the term
X1isX − 1 has infinitely many solutions.
So all this problem is useful for (besides discussing induction)
is checking that some X indeed yields some Y. We’ll extend it
next week.

I to stop Prolog from running to negative infinity, we add
another line on top of the program (you don’t need to do stuff
like that for now):
gauss(-1,) :- !, fail.
gauss(0,0).
gauss(X,Y) :-

X1 is X - 1,
Y1 is Y - X, gauss(X1,Y1).

Nicolas Höning Tutorium to Introduction to AI, 2nd week - Nicolas Höning

topics
induction + recursion

lists
unification

induction vs deduction
An example: the young gauss

some more stuff to take care of

I Avoid left recursion. You should use right recursion in almost
every case.
That just means: You call yourself again as the last step.

I Try to insert writeln() - predicates at different points of the
recursive gauss - predicate and try to imagine when they are
called.

Nicolas Höning Tutorium to Introduction to AI, 2nd week - Nicolas Höning

topics
induction + recursion

lists
unification

lists in Prolog

another example: filter()

I let’s write a function that filters a specific Item ”Out” from a
list ”A” and returns the result.
(we do not care if the order is right)

I we could do this in a procedural language:
function filter (Item Out, List A)

List B
for every Item I in A:

if I != Out B.push I
end for
return B

end function

Nicolas Höning Tutorium to Introduction to AI, 2nd week - Nicolas Höning

topics
induction + recursion

lists
unification

lists in Prolog

another example: filter()

I let’s write a function that filters a specific Item ”Out” from a
list ”A” and returns the result.
(we do not care if the order is right)

I we could do this in a procedural language:
function filter (Item Out, List A)

List B
for every Item I in A:

if I != Out B.push I
end for
return B

end function

Nicolas Höning Tutorium to Introduction to AI, 2nd week - Nicolas Höning

topics
induction + recursion

lists
unification

lists in Prolog

filter() functionally

I and, we could do it more prolog-stylish, that means functional:

I function filter (Item Out, List A, List B)
if A.empty return B
else

Item I = A.pop()
if I != Out B.push I
return filter (Out, A, B)

end else
end function

I ahh, recursion! and we see:
I a simple base case (A is empty)

I a transition step (pop A, push B and try again)

Nicolas Höning Tutorium to Introduction to AI, 2nd week - Nicolas Höning

topics
induction + recursion

lists
unification

lists in Prolog

filter() functionally

I and, we could do it more prolog-stylish, that means functional:

I function filter (Item Out, List A, List B)
if A.empty return B
else

Item I = A.pop()
if I != Out B.push I
return filter (Out, A, B)

end else
end function

I ahh, recursion! and we see:
I a simple base case (A is empty)
I a transition step (pop A, push B and try again)

Nicolas Höning Tutorium to Introduction to AI, 2nd week - Nicolas Höning

topics
induction + recursion

lists
unification

lists in Prolog

filter() functionally

I and, we could do it more prolog-stylish, that means functional:

I function filter (Item Out, List A, List B)
if A.empty return B
else

Item I = A.pop()
if I != Out B.push I
return filter (Out, A, B)

end else
end function

I ahh, recursion! and we see:
I a simple base case (A is empty)
I a transition step (pop A, push B and try again)

Nicolas Höning Tutorium to Introduction to AI, 2nd week - Nicolas Höning

topics
induction + recursion

lists
unification

lists in Prolog

filter in Prolog

I now, how to translate this to Prolog? we need to translate

I an if/else construct

I and use only Prolog datatypes.
lists are the only real datatype in Prolog. You can use them
for a lot of things.

Nicolas Höning Tutorium to Introduction to AI, 2nd week - Nicolas Höning

topics
induction + recursion

lists
unification

lists in Prolog

filter in Prolog

I now, how to translate this to Prolog? we need to translate

I an if/else construct

I and use only Prolog datatypes.
lists are the only real datatype in Prolog. You can use them
for a lot of things.

Nicolas Höning Tutorium to Introduction to AI, 2nd week - Nicolas Höning

topics
induction + recursion

lists
unification

lists in Prolog

filter in Prolog

I now, how to translate this to Prolog? we need to translate

I an if/else construct

I and use only Prolog datatypes.
lists are the only real datatype in Prolog. You can use them
for a lot of things.

Nicolas Höning Tutorium to Introduction to AI, 2nd week - Nicolas Höning

topics
induction + recursion

lists
unification

lists in Prolog

filter in Prolog

I first: the base case. ideas?

I filter(,[],[]).
this is the if of the if/else statement. The else will just be
another predicate where the parameters are different. That’s
how it is done in Prolog. Now we want to handle the case
where A’s first item is not to be filtered.

I filter(Out,[Head|RestA],[Head|RestB]) :-
not(Out=Head),
filter(Out,RestA,RestB).

I that leaves us with only one more case: What to do if we
indeed want to filter?

I filter(Out,[Out|RestA],ListB) :-
filter(Out,RestA,ListB).

Nicolas Höning Tutorium to Introduction to AI, 2nd week - Nicolas Höning

topics
induction + recursion

lists
unification

lists in Prolog

filter in Prolog

I first: the base case. ideas?

I filter(,[],[]).
this is the if of the if/else statement. The else will just be
another predicate where the parameters are different. That’s
how it is done in Prolog. Now we want to handle the case
where A’s first item is not to be filtered.

I filter(Out,[Head|RestA],[Head|RestB]) :-
not(Out=Head),
filter(Out,RestA,RestB).

I that leaves us with only one more case: What to do if we
indeed want to filter?

I filter(Out,[Out|RestA],ListB) :-
filter(Out,RestA,ListB).

Nicolas Höning Tutorium to Introduction to AI, 2nd week - Nicolas Höning

topics
induction + recursion

lists
unification

lists in Prolog

filter in Prolog

I first: the base case. ideas?

I filter(,[],[]).
this is the if of the if/else statement. The else will just be
another predicate where the parameters are different. That’s
how it is done in Prolog. Now we want to handle the case
where A’s first item is not to be filtered.

I filter(Out,[Head|RestA],[Head|RestB]) :-
not(Out=Head),
filter(Out,RestA,RestB).

I that leaves us with only one more case: What to do if we
indeed want to filter?

I filter(Out,[Out|RestA],ListB) :-
filter(Out,RestA,ListB).

Nicolas Höning Tutorium to Introduction to AI, 2nd week - Nicolas Höning

topics
induction + recursion

lists
unification

lists in Prolog

filter in Prolog

I first: the base case. ideas?

I filter(,[],[]).
this is the if of the if/else statement. The else will just be
another predicate where the parameters are different. That’s
how it is done in Prolog. Now we want to handle the case
where A’s first item is not to be filtered.

I filter(Out,[Head|RestA],[Head|RestB]) :-
not(Out=Head),
filter(Out,RestA,RestB).

I that leaves us with only one more case: What to do if we
indeed want to filter?

I filter(Out,[Out|RestA],ListB) :-
filter(Out,RestA,ListB).

Nicolas Höning Tutorium to Introduction to AI, 2nd week - Nicolas Höning

topics
induction + recursion

lists
unification

lists in Prolog

filter in Prolog

I first: the base case. ideas?

I filter(,[],[]).
this is the if of the if/else statement. The else will just be
another predicate where the parameters are different. That’s
how it is done in Prolog. Now we want to handle the case
where A’s first item is not to be filtered.

I filter(Out,[Head|RestA],[Head|RestB]) :-
not(Out=Head),
filter(Out,RestA,RestB).

I that leaves us with only one more case: What to do if we
indeed want to filter?

I filter(Out,[Out|RestA],ListB) :-
filter(Out,RestA,ListB).

Nicolas Höning Tutorium to Introduction to AI, 2nd week - Nicolas Höning

topics
induction + recursion

lists
unification

lists in Prolog

it’s really important how you specify the parameters because by
that you specify your cases!
So make use of that head/tail notation. In this predicate you see
that we pass an item from A to B just by giving it the same name:
filter(Out,[Head|RestA],[Head|RestB]) :-

not(Out=Head),
filter(Out,RestA,RestB).

Nicolas Höning Tutorium to Introduction to AI, 2nd week - Nicolas Höning

topics
induction + recursion

lists
unification

Unification

I Unification is Prolog’s way to prove some things are equal.
You basically need to know one thing:

I Variables are written in capital letters, atoms in small letters.
You can assign the latter to the first, but not the other way
round (I guess you knew that)

I The rest is details: Treat predicate names as atoms.
Unification is associative [t	s = t(s) = (t)s]. A
substitution has a funny symbol (like), but is basically just
a possible model for your universe.

Nicolas Höning Tutorium to Introduction to AI, 2nd week - Nicolas Höning

topics
induction + recursion

lists
unification

Unification

I Unification is Prolog’s way to prove some things are equal.
You basically need to know one thing:

I Variables are written in capital letters, atoms in small letters.
You can assign the latter to the first, but not the other way
round (I guess you knew that)

I The rest is details: Treat predicate names as atoms.
Unification is associative [t	s = t(s) = (t)s]. A
substitution has a funny symbol (like), but is basically just
a possible model for your universe.

Nicolas Höning Tutorium to Introduction to AI, 2nd week - Nicolas Höning

topics
induction + recursion

lists
unification

Unification

I Unification is Prolog’s way to prove some things are equal.
You basically need to know one thing:

I Variables are written in capital letters, atoms in small letters.
You can assign the latter to the first, but not the other way
round (I guess you knew that)

I The rest is details: Treat predicate names as atoms.
Unification is associative [t	s = t(s) = (t)s]. A
substitution has a funny symbol (like), but is basically just
a possible model for your universe.

Nicolas Höning Tutorium to Introduction to AI, 2nd week - Nicolas Höning

topics
induction + recursion

lists
unification

Unification - the algorithm

If t1 is a variable then t1→t2
If t2 is a variable then t2→t1
If t1 and t2 are predicates, decompose them into predicate name
and arguments. If predicate names are equal unify the argument
lists.
If t1 and t2 are lists, unify element by element.
else: FAIL!

Nicolas Höning Tutorium to Introduction to AI, 2nd week - Nicolas Höning

topics
induction + recursion

lists
unification

Unification - examples

I p(X,a,Y) =?= p(b,Z,T)

I Z→a, X→b, Y=T

I p(b,a,Y) =?= p(b,Z,T)

I Z→a, Y=T

I p(b,a,Y) =?= p(b,a,T)

I Y=T

I p(b,a,T) === p(b,a,T)

Nicolas Höning Tutorium to Introduction to AI, 2nd week - Nicolas Höning

topics
induction + recursion

lists
unification

Unification - examples

I p(X,a,Y) =?= p(b,Z,T)

I Z→a, X→b, Y=T

I p(b,a,Y) =?= p(b,Z,T)

I Z→a, Y=T

I p(b,a,Y) =?= p(b,a,T)

I Y=T

I p(b,a,T) === p(b,a,T)

Nicolas Höning Tutorium to Introduction to AI, 2nd week - Nicolas Höning

topics
induction + recursion

lists
unification

Unification - examples

I p(X,a,Y) =?= p(b,Z,T)

I Z→a, X→b, Y=T

I p(b,a,Y) =?= p(b,Z,T)

I Z→a, Y=T

I p(b,a,Y) =?= p(b,a,T)

I Y=T

I p(b,a,T) === p(b,a,T)

Nicolas Höning Tutorium to Introduction to AI, 2nd week - Nicolas Höning

topics
induction + recursion

lists
unification

Unification - examples

I p(X,a,Y) =?= p(b,Z,T)

I Z→a, X→b, Y=T

I p(b,a,Y) =?= p(b,Z,T)

I Z→a, Y=T

I p(b,a,Y) =?= p(b,a,T)

I Y=T

I p(b,a,T) === p(b,a,T)

Nicolas Höning Tutorium to Introduction to AI, 2nd week - Nicolas Höning

topics
induction + recursion

lists
unification

Unification - examples

I p(X,a,Y) =?= p(b,Z,T)

I Z→a, X→b, Y=T

I p(b,a,Y) =?= p(b,Z,T)

I Z→a, Y=T

I p(b,a,Y) =?= p(b,a,T)

I Y=T

I p(b,a,T) === p(b,a,T)

Nicolas Höning Tutorium to Introduction to AI, 2nd week - Nicolas Höning

topics
induction + recursion

lists
unification

Unification - examples

I p(X,a,Y) =?= p(b,Z,T)

I Z→a, X→b, Y=T

I p(b,a,Y) =?= p(b,Z,T)

I Z→a, Y=T

I p(b,a,Y) =?= p(b,a,T)

I Y=T

I p(b,a,T) === p(b,a,T)

Nicolas Höning Tutorium to Introduction to AI, 2nd week - Nicolas Höning

topics
induction + recursion

lists
unification

Unification - examples

I p(X,a,Y) =?= p(b,Z,T)

I Z→a, X→b, Y=T

I p(b,a,Y) =?= p(b,Z,T)

I Z→a, Y=T

I p(b,a,Y) =?= p(b,a,T)

I Y=T

I p(b,a,T) === p(b,a,T)

Nicolas Höning Tutorium to Introduction to AI, 2nd week - Nicolas Höning

	topics
	induction + recursion
	induction vs deduction
	An example: the young gauss

	lists
	lists in Prolog

	unification

