Tutorium to Introduction to Al, 8th week -
Nicolas Honing

Nicolas Honing

July 13, 2006

Nicolas Honing Tutorium to Introduction to Al, 8th week - Nicolas Honing



nl interface -> Prolog
the task
the toy task
our toy task - using a DCG grammar

Nicolas Honing Tutorium to Introduction to Al, 8th week - Nicolas Honing



the task
the toy task

nl interface -> Prolog .
terface olog our toy task - using a DCG grammar

the homework task

» You are in principle expected to write a system that is driven
by (a subset of) natural language.

» |t accepts new information:
process([the,mall,is,near,the,school .],[]).
process([is,the,school,near,the,mall,?],[]).
process([where,is,the,school?],A).

Nicolas Honing Tutorium to Introduction to Al, 8th week - Nicolas Honing



the task
the toy task

nl interface -> Prolog .
terface olog our toy task - using a DCG grammar

our "toy" task

To get you started, | thought we might develop a little toy natural
language interface system with these properties:

» the database stores instances of an Object-Value predicate
"xy(Object,Value)”

» there is only one statement-type: [Object,’is’,Value,.']

» and only one one question-type ['is’,Object,Value,"?'] (with
answers 'yes' or 'no’)

Nicolas Honing Tutorium to Introduction to Al, 8th week - Nicolas Honing



the task
the toy task

nl interface -> Prolog .
terface olog our toy task - using a DCG grammar

our "toy" task

the database stores instances of an Object-Value predicate
"xy(Object, Value)”

» ok, let's just imagine that data structure as a predicate like
this (we could use any):
xy(O,V).

» we can get this into the database "live", because Prolog is
capable to add to its functions while working on its functions.
We could say:

» assert(xy(O,V)).

Nicolas Honing Tutorium to Introduction to Al, 8th week - Nicolas Honing



the task
the toy task

nl interface -> Prolog .
terface olog our toy task - using a DCG grammar

our "toy" task

» there is only one statement-type: [Object,’is’,Value,".']

» ok, | would say that means we accept something like this:
s([the, Object, is, Value, .])

» and only one one question-type ['is’,Object,Value, 7] (with
anwsers 'yes’ or 'no’)

» | would say that means we accept something like this:
s([is, the, Object, Value, 7])

Nicolas Honing Tutorium to Introduction to Al, 8th week - Nicolas Honing



the task
the toy task

nl interface -> Prolog .
terface olog our toy task - using a DCG grammar

our "toy" task

Now we have it all together. The first version is as short as this:

» s([the, Object, is, Value, .]) :- assert(xy(Object,Value)).
s([is, the, Object, Value, ?]) :- xy(Object,Value).

Nicolas Honing Tutorium to Introduction to Al, 8th week - Nicolas Honing



nl interface -> Prolog

our "toy" task

the task
the toy task
our toy task - using a DCG grammar

Here a few queries | posed and the responses:

» 7- s([the,dog,is,blue,.]).
Yes

» 7- s([the,cat,is,red,.]).
Yes

» 7- s([is,the,cat,blue,?]).
No

» 7- s([is,the,cat,red,?]).
Yes

» 7- listing(xy).
- dynamic xy/2.
xy(dog, blue).
xy(cat, red).

Nicolas Honing

Tutorium to Introduction to Al, 8th week - Nicolas Honing



the task
the toy task

nl interface -> Prolog our toy task - using a DCG grammar

our "toy” task - using a DCG grammar

» Of course, that was really simple. We want to use more types
of statements and questions.

» As we know a good way for formulating such stuff, DCGs,
how can we use them?

» short answer... something like this:
s2(X) :-
statement(X, []).
statement —> object, [is], value, [.].
statement —> [there], [is], [a], value, object, [.].
» in our program we call a DCG grammar rule with two extra
arguments:
the list to be checked - and an empty list (that's the
difference list notation)

Nicolas Honing Tutorium to Introduction to Al, 8th week - Nicolas Honing



the task
the toy task

nl interface -> Prolog our toy task - using a DCG grammar

our "toy” task - using a DCG grammar

» But that only works for yes/no - answers. We need to check a
sentence and process some ingridients of it (here: Object and
Value).

» We can add parameters to the grammar rules such that we
can ask for it like this:
> s2(X) -
statement(Object, _, Value, _, X, []),
assert(xy(Object, Value)).
s2(X) :-
question(_, Object, Value, _, X, []),
xy(Object,Value).

Nicolas Honing Tutorium to Introduction to Al, 8th week - Nicolas Honing



the task
the toy task

nl interface -> Prolog our toy task - using a DCG grammar

our "toy” task - using a DCG grammar

» How does that work? There are a lot parameters...

» here are the rules (in this example | said object can be "a
cat”, "the dog" etc. just to get a little more complex...):

» statement(O, [is],V,[.])

—> object(O), [is], value(V), [.].
question([is],O,V,[?])

—> [is], object(O), value(V), [?].
det —> [a].
det —> [the].
object(O) —> det, atomic(O).
atomic(X) —> [X].
value(X) —> atomic(X).

Nicolas Honing Tutorium to Introduction to Al, 8th week - Nicolas Honing



the task
the toy task

nl interface -> Prolog our toy task - using a DCG grammar

our "toy” task - using a DCG grammar

» We can ask for the Prolog representation of such a rule:

» 7- listing(statement).
statement(A, [is], B, [.'], C, D) =-
object(A, C, E),
'C'(E, is, F),
value(B, F, G),
'C(G, ", D).
Yes
» that means: C is put into the first (left) rule, object, as start.
And in the end, we should get D. C is the sentence list that
we put into the rule and D is the empty list.
Ask for listing(object) and listing(det) to see more of the
involved rules.

Nicolas Honing Tutorium to Introduction to Al, 8th week - Nicolas Honing



the task
the toy task

nl interface -> Prolog our toy task - using a DCG grammar

our "toy” task - using a DCG grammar

» OK, what can we do now?
» We can use all the linguistic representation mechanisms DCG
gives us

» And we can use them in a normal Prolog program, which, of
course, can be smarter than what | did here...

Nicolas Honing Tutorium to Introduction to Al, 8th week - Nicolas Honing



the task
the toy task

nl interface -> Prolog our toy task - using a DCG grammar

your job

» You can extend this in several ways:

» You could work on the linguistic capabilities of the system
(question/statement - types)

» You could also think about the answers the system gives.
What could make them useful in terms of finding something.
Imagine you're standing at the church and ask the system how
to find the school. You'd expect some kind of roadmap.

Nicolas Honing Tutorium to Introduction to Al, 8th week - Nicolas Honing



the task
the toy task

nl interface -> Prolog our toy task - using a DCG grammar

the end

> questions?

Nicolas Honing ium to Introduction to Al, 8th week -



	topics
	nl interface -> Prolog
	the task
	the toy task
	our toy task - using a DCG grammar


