
Debugging prolog

Intro to AI - tutorial by Nicolas Höning
April 12, 2006

● debugging originally means "finding errors in
your program"

● as programs became more abstract, it now
also means: "follow what your program is
doing"

● in prolog the red line you will want to follow is
the backtracking (you'll learn more about that
later)

What is debugging?

ways of debugging in prolog

we'll talk about 2 of them:

● tracing (prolog-style)
● writing (your style)

diving in
we'll use this family relation program (here
are just a few lines):

mann(johannes).
mann(klaus).
mann(manuel).
...
...
frau(elisabeth).
frau(christa).
frau(margret).
...

elter(johannes,christa).
elter(johannes,margret).
...
elter(elisabeth,christa).
elter(elisabeth,margret).
...
elter(christa, manuel).
...
grosselter(G,E) :-

elter(G,X),
elter(X,E).

our query will be:
grosselter(X,manuel).

 the result is always:

 ?- grosselter(X,manuel).

X = johannes ;

X = elisabeth ;

No
 but what is prolog doing?

The example query

What prolog does (in prose)

prolog is trying to fill the variables such that some
grosselter - relation is provable.
That means:

1. some X might be „elter“ of some Y (that is:
finding a model for X and Y)
2. and if that Y actually is „elter“ of manuel, then X
is a winner (here Prolog decides if that model is
valid)

tracing

 type trace(grosselter/2,+all). and run the
query again.

 We can see that prolog is doing something.
but there should be more:

 type trace(elter/2,+all). and run the query
again.

 now that is a history. We are now tracing
what happens to two predicates while prolog
tries to prove our query.

Note:

● Four "ports" of a predicate can be traced: call,exit,fail,redo (you
can turn each of them on or off, e.g. trace(elter/2,-call) (here „/2“
describes the arity of that predicate)
● If you follow Prolog here, you'll see „live“ why the order of your
clauses makes a difference!
● Redo goes up to the last step that did not fail and tries to go on
from there on another path (yes, that is backtracking), but:
● elter(christa,manuel) is visited often, but only evaluated UNLESS
it is part of an unvisited branch (so prolog keeps track of this –of
course-).
● to turn tracing off, type nodebug. important: your trace points will
stay (type debugging. when in debug/tracing mode to see them)
● type help. to read about predefined predicates like trace yourself

writing

sometimes you might be interested in other things
like the value of variables at a specific point. you
can write your own output then.
Just add another goal to the „grosselter“ -
predicate:

grosselter(G,E) :-
elter(G,X),
writeln('trying '+G+' for grandparent and '+X+' for parent'),
elter(X,E).

(there is no harm done to the truthfulness of your
program: „writeln“ always returns true)

● use single quotation marks
● use the "+" operator to incorporate variables
● this is always ressource-consuming, so keep
that in mind for later, bigger programs!
● hint: use an extra predicate (e.g. my_writeln())
where you can switch all your debugging on or off
at one line like this:
my_writeln(A)

%:- writeln(A)
.

takeaways for writing your own
output:

