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Abstract
In Particle  Swarm  Optimization  (PSO) with  local  neighbourhood,  the

social  part  of  change  in  the  particle's  velocity  is  computed  considering
the  performance  of  a set  of  neighbours.  Almost  all  of  the  literature  uses

neighbourhood  relations  of  a fixed  topology.  This  paper  introduces  a
method  that  computes  a local  optimum  based  on  geographical,  non- fixed

neighbourhood  in  Euclidian  space.  It compares  the  two  approaches  in  performance  
and  geographical  behaviour.  The  results  show  that  swarms  with  geographical

neighbourhood  perform  worse  in  terms  of  fitness.  Furthermore,  the  results  indicate  
that  swarms  with  fixed  topologies  start  by exploring  the  search  space  due  to  
initial  random  distribution  and  then  turn  to  exploitation  because  of  emerged  

geographical  neighbourhood.

1.  Introduction

Particle  Swarm  Optimization  (PSO)  is  an  algorithm  with  a  natural  inspiration.  By 
guiding  the  movements  of  individual  particles  in  a  multi - dimensional  space  with  
simple  rules,  it  was  initially  intended  to  simulate  the  behaviour  of  flocking  birds.  Only  
some  time  later  it  became  clear  that  the  multi - dimensional  space  could  be  viewed  as  a  
search  space  with  each  particle  being  a possible  solution  to  the  problem  in  question.
PSO resides  in  the  same  family  of  algorithms  as  Genetic  Algorithms  (GA), because  both  
operate  against  a  fitness  function  that  describes  the  problem  and  update  their  
population  stepwise.
The  update  process  of  the  particles  velocities  in  the  swarm  constitutes  the  algorithm.  
Therein,  each  particle  communicates  the  best  solution  found  so  far  to  neighbouring  
particles.  This  information,  the  so- called  local  best,  is  then  incorporated  into  the  
update.  The  communication  depends  on  the  topology  implemented  in  the  swarm.  If 
every  particle  is  connected  to  every  other  particle,  the  local  best  is  a  global  best.  The  
research  has  been  concentrated  on  topologies  with  fixed  relations.  That  way,  each  
particle  will  speak  with  the  same  neighbours  over  the  whole  course  of  the  search,  no  
matter  where  they  are.  I will  implement  a  non- fixed  neighbourhood  that  is  defined  by  
proximity  in  Euclidean  space  and  compare  the  behaviour  to  a  traditional,  fixed  
topology.

The  first  hypothesis:  With  fixed  neighbourhood,  I  expect  the  differences  in  
neighbourhood  distances  to  become  smaller  while  the  number  of  runs  increases  -  a  
kind  of  geographical  neighbourhood  emerges  in  the  traditional,  fixed  topology.

The  second  hypothesis  concerns  the  first  iterations  of  the  algorithm:  Comparing  the  
two  approaches,  I  suspect  that  with  geographical  neighbourhood,  the  
exploration /exploitation  –  trade- off  will  tend  to  exploitation,  because  geographic  
neighbours  explore  the  neighbourhood  together  (see  section  2  for  an  introduction  to  
the  exploration /exploitation  dilemma).  
I figure  that  fixed  neighbourhood  is  another  factor  of  randomness  that  acts  in  favour  
of  exploration:  Since  particles  that  are  fixed  neighbours  tend  to  start  on  different  
locations  in  the  search  space  (because  they  are  randomly  scattered  there)  they  will  - in  



the  first  iterations -  explore  much  of  the  room  between  them  quickly,  because  the  ones  
with  bad  solutions  drift  towards  their  best  neighbour.

This  paper  is  organized  as  follows:  Section  2  introduces  the  PSO algorithm  formally.  
Section  3  motivates  geographical  consideration  of  particle  swarms  and  describes  the  
algorithm  I used  to  compute  it.  In section  4  and  5 I describe  the  experiment  setup  and  
results,  respectively.  Section  6 concludes  the  paper  and  provides  an  outlook  on  further  
work.

2.  The  PSO algorithm

Each  particle  in  the  swarm  has  a  value  for  each  dimension  of  the  solution  space  and  
thereby  describes  its  current  position.  Each  particle  also  has  a  velocity  for  each  
dimension,  describing  its  movement  through  the  solution  space.  All  those  values  are  
initialized  randomly.
The  algorithm  is  shown  in  formula  (1). Its  task  consists  in  updating  the  velocity  as  the  
particles  move  through  the  solution  space  (With  the  new  velocity  new_vel ,  the  new  
position  new_pos  can  then  easily  be  computed  by  adding  the  velocity  vector  new_vel  to  
the  vector  of  the  current  position,  cur_pos ). 
The  algorithm  works  by  orienting  each  particle,  for  each  dimension  d ,  according  to  
three  things:  its  current  velocity  cur_vel ,  the  best  position  it  ever  visited  (pbest)  and  
the  best  position  one  of  its  neighbours  ever  visited  (lbest ).  Kennedy  [5]  calls  
orientation  after  pbest  the  'cognitive'  part,  while  orientation  after  lbest  is  called  the  
'social'  part.
 

Formula  (1) The  PSO Algorithm

The  algorithm  can  be  tweaked  with  in  many  ways.  The  'cognitive'  and  'social'  parts  can  
be  weighted  via  the  constants  cc and  sc. They  also  get  randomized  by  cr  and  sr . 
To  control  the  range  of  values  in  the  particles,  it's  also  common  to  specify  an  
initialization  range  from  which  start - values  are  randomly  chosen.  Furthermore  (not  
shown  in  formula  (1)),  a  technique  called  “velocity  clamping”  can  be  applied:  The  
values  for  the  velocity  are  restricted  to  be  in  a  given  range.  This  protects  particles  
from  becoming  too  fast.

The  PSO  algorithm  faces,  like  every  search  algorithm,  the  dilemma  between  
exploration  and  exploitation.  The  particle  swarm  should  explore  much  of  the  search  
space  to  avoid  local  optima.  But  it  should  also  exploit  promising  solutions  to  find  real  
good  solutions.  One  way  to  address  this  problem  is  to  limit  the  velocity  of  the  
particles  by  a  momentum  weight.  In  (1),  this  factor  is  represented  by  m .  Some  
researchers  prefer  to  set  it  to  a  value  below  1,  like  0.7.  Others  gradually  decrease  its  
value  over  the  time  of  the  run.
Another  way  of  looking  at  the  problem  is  the  social  part  of  the  algorithm.  The  
behaviour  of  a  particle  swarm  includes  an  independent  search  by  each  particle  as  well  
as  a  communication  within  the  swarm  about  good  solutions.  This  communication  also  
plays  a  role  in  the  exploration /exploitation - dilemma.  For  instance,  the  faster  the  news  
of  a  good  solution  spreads  within  the  population,  the  higher  is  the  risk  of  it  becoming  
a  local  optimum  because  other  particles,  attracted  by  the  knowledge  of  the  good  
solution,  stop  exploring  for  better  solutions.  Many  different  fixed  topologies  have  
been  discussed  (Kennedy,  Mendes  [6];  Richards,  Ventura  [7],  Suganthan  [8]).  For  
example,  the  so- called  “star”- topology,  in  which  every  particle  knows  about  every  
other  particles  personal  best,  is  mostly  considered  as  able  to  reach  good  solutions  
quickly,  but  it  is  also  in  danger  of  converging  on  local  optima.



The  most - widely  used  fixed  topology  is  the  “ring”- topology  (every  particle  with  an  
index  i has  two  neighbours,  namely  those  with  index  i- 1  and  i+1).  I will  use  it  to  
compare  fixed  with  geographical  neighbourhood.  

3.  Geographical  Neighbourhood

3.1  Motivation

While  the  original  inspiration  to  the  Particle  Swarm  Algorithm  stems  from  nature,  it's  
now  mostly  being  used  for  optimization  purposes.  For  that  purpose,  several  methods  
can  be  applied  to  achieve  efficiency,  though  they  sometimes  lead  away  from  the  
original  idea.  In  a  swarm  of  insects  (or  birds,  or  fish)  each  particle  will try  to  stay  near  
to  its  geographical  neighbours.  In  which  way  this  exactly  happens,  is  unclear.  Still,  the  
common  method  in  PSO research  is  to  define  neighbourhood  relations  that  are  fixed  
for  the  whole  search.  Geographical  relations  have  not  yet  been  studied  very  much.  The  
fixed  neighbourhood  is  certainly  an  artificial  situation.  It's  therefore  interesting  to  
study  geographical  neighbourhood  to  learn  more  about  nature  itself.
For  example,  geographical  neighbourhood  can  be  of  use  for  behavioural  models,  to  the  
extent  of  studying  human  behaviour  in  social  science  contexts  (Kennedy  [5] addresses  
it  shortly).  Psychological  findings  tell  us  that  humans  are  influenced  by  peer  groups.  
But  peer  groups  are  not  fixed.  Following  this  thought  even  further,  if  the  values  that  
the  individual  particles  carry  would  resemble  real  properties,  why  would  two  particles  
listen  to  each  other,  even  if  they  are  not  at  all  alike  (recall  that  the  properties  of  the  
particles  are  randomized  at  the  beginning  of  the  algorithm)?  In nature,  a  great  part  of  
attraction  between  individual  organisms  can  be  explained  by  their  similarities.  (There  
has  also  recently  been  shown  that  humans  are  attracted  towards  mates  with  different  
traits,  such  as  a  different  immune  system.  Nevertheless,  mating  is  mostly  about  
similar  traits.)

Furthermore,  if  differences  between  the  two  approaches  can  be  described  and  
explained,  we  might  learn  more  about  fixed  neighbourhood,  the  method  widely  used.  
For  instance,  if  any  of  the  hypotheses  can  be  shown  to  hold,  we  can  make  interesting  
statements  about  the  behaviour  of  PSO  algorithms  with  fixed  neighbourhood  
topologies  that  haven't  been  clear  before.  We  might  also  learn  more  about  fixed  
neighbourhood  while  we  focus  the  discussion  on  geographical  properties.  In  addition  
to  the  classical  fitness  measures,  I will  introduce  measures  that  deal  with  geographic  
properties  of  the  particles  neighbourhood  relations.

.
3.2  The  Algorithm

Geographical  distance  in  a  multidimensional  space  can  easily  be  computed  by  the  
Euclidean  distance  metric.  Let  a  and  b  be  two  particles  and  dims  the  number  of  
dimensions  in  the  solution  space.  The  Euclidean  distance  between  a  and  b  is  defined  
by  the  square  root  of  the  sum  of  the  squared  distances  of  the  particle's  values  per  
dimension  (see  Formula  (2)).

Formula  (2) The  Euclidean  distance  metric

While  the  Euclidean  distance  measure  is  easy  to  understand,  the  algorithm  to  
determine  which  of  all  the  other  particles  possibly  are  neighbours  has  uncomfortable  
runtime  properties.



The  algorithm  has  to  define,  for  a  given  particle,  which  particles  have  the  smallest  
Euclidean  distance  to  it.  The  simplest  method  would  be  to  simply  compute  the  
distance  to  every  other  particle  and  sort  the  results  with  respect  to  Euclidean  distance  
in  ascending  order.  This  method  is  exact,  but  resource - consuming.  It  compares  every  
particle  to  every  other  particle,  with  a  calculation  that  involves  adding  up  every  
dimension.  If we assume  that  the  number  of  particles  is  much  higher  than  the  number  
of  dimensions  (this  would  be  a reasonable  setup),  the  problem  complexity  class  is  still  
O(n 2). Also,  recall  that  this  calculation  is  only  per  iteration.
There  are  a  number  of  heuristics  one  could  apply  to  shorten  the  runtime  of  the  
algorithm.  One  idea  might  be  to  setup  a  radius  in  which  to  look  for  particles  and  
constantly  widen  it,  until  enough  possible  neighbours  are  in.  We  could  exclude  
particles  even  faster  if  we  compare  the  distances  dimension - wise,  instead  of  
computing  the  Euclidean  distance  (in  two- dimensional  space  that  could  be  visualized  
as  a  squared  search  window  rather  than  a  round  search  spotlight).  A good  radius  to  
start  with  could  be  the  distance  to  the  nearest  neighbour  of  the  last  iteration.  The  
problem  with  this  approach  is  that  our  data  structure  doesn't  allow  testing  a  region  
for  particles.  Particles  have  no  vision.  Unless  we  introduce  a  spatial - indexed  data  
structure,  we  would  compare  all  the  particles  again,  ending  up  in  the  same  complexity  
class.
We  could  also  avoid  comparing  all  particles  by  sorting  neighbours  in  the  array  of  
particles  next  to  each  other  once  we  identified  them  as  neighbours.  This  would  
shorten  the  time  to  find  near  particles.  But  then  we  would  lose  exactness.  We would  
only  need  to  test  some  particles  instead  of  all,  but  we  might  overlook  others  that  are  
much  nearer.
The  implications  of  these  heuristics  for  the  behaviour  of  the  PSO  algorithm  are  
unclear.  It  might  be  possible  to  be  much  more  efficient  and  still  achieve  reasonable  
search  behaviour.  Since  the  goal  of  this  paper  is  a  comparison  between  geographical  
and  fixed  neighbourhood,  I will be  using  the  simplest  method  without  any  heuristics.

4.  Methods

For  this  paper  an  experiment  on  PSO was  conducted  with  three  functions  that  are  
widely  used  in  research  on  evolutionary  algorithms  (see  Richards,  Ventura[7]  - also  for  
graphical  views  on  two- dimensional  landscapes -  and  Angeline  [2]).  They  are  
introduced  below.  The  experiment  tested  geographical  neighbourhood  as  introduced  
in  section  3  against  a  fixed  neighbourhood  with  the  ring  topology  mentioned  in  
section  2. Both  used  a neighbourhood  of  two  neighbours  to  find  their  lbest . See section  
4.2  for  details  on  the  experiment  setup.
The  first  hypothesis  is  that  a  PSO search  with  fixed  neighbourhoods  will  gradually  
turn  into  a  search  with  geographical  neighbourhood.  To  test  this,  two  values  were  
measured:  The  average  distance  a  particle  has  to  its  two  neighbours  (“closeness”)  and  
the  average  rank  its  neighbours  have  on  a  scale  that  ranks  all  particles  with  respect  to  
the  Euclidean  distance  to  the  particle  in  question  (“georank”).
The  second  hypothesis  is  that  geographical  neighbourhood  will  lead  to  a  more  
exploitative  behaviour  in  the  beginning  of  the  search.  To  test  for  this,  the  fitness  of  
the  swarms  was  measured  in  the  classical  way: The  average  of  the  personal  bests  of  all  
particles  was  recorded  as  well  as  the  global  best  of  the  whole  swarm.
The  experiment  also  measured  the  variance  of  the  data.  So  at  every  100  iterations  
during  the  run  the  variance  in  the  positions  of  the  swarms  was  measured.  Variance  is  
a  statistical  method  to  measure  how  alike  the  entries  in  a  vector  are  (the  vector  in  this  
case  would  be  the  values  of  one  dimension  over  all  particles  in  the  swarm).  It  sums  
over  the  squares  of  the  distances  between  the  entries  and  the  mean  of  all  entries  of  
that  vector  and  then  computes  the  mean  of  that  sum.  I was  interested  in  the  variance  
on  each  dimension  to  measure  how  far  spread  the  population  is.  So,  for  n  particles,  
formula  (3) describes  the  algorithm.



Formula  (3) The  variance  measure  for  a particle  swarm

Of course,  for  each  trial,  the  mean  variance  of  all  30  swarms  was  taken  into  account.

4.1  Test  functions

This  subsection  introduces  the  test  functions  that  were  used  in  the  experiments.  All of  
them  were  treated  as  minimizing  problems.  
 
Sphere  The  sphere  function  maximizes  the  absolute  value  on  each  dimension.  It  is  
therefore  not  a  difficult  problem  to  solve,  but  a  good  way  to  test  the  optimizing  ability  
of  an  algorithm.

Formula  (4) The  sphere  function

Rastrigin  This  is  a  function  that  has  a  lot  of  local  optima  that  might  deceive  the  
algorithm.

Formula  (5) The  rastrigin  function

Griewank  The  griewank  function  adds  a  lot  of  noise  that  can  be  deceiving  the  
algorithm  to  exploit  local  optima.

Formula  (6) The  griewank  function

4.2  Setup

The  experiment  used  a swarm  size  of  75  and  a  dimensionality  of  10.  The  swarms  were  
allowed  to  search  for  300  iterations  with  the  sphere  and  the  rastrigin  function  and  for  
500  iterations  with  the  griewank  function  (according  to  Angeline  [2]). The  results  were  
averaged  over  30  trials  on  each  problem.  The  randomizer  was  the  Mersenne  Twister  of  
Python  2.4.  The  particles  values  were  initialized  in  the  range  of  - 15  to  15  for  each  
problem.  Both  the  cognitive  and  the  social  weight  were  set  to  1.5.  Finally,  the  values  
for  the  velocity  were  restricted  to  be  within  the  range  of  - 4  to  4  and  the  algorithms  
activity  was  also  cooled  down  by  gradually  decreasing  the  momentum  weight  from  1.0  
to  0.4  over  the  iterations.



5.  Results

Below  are  the  resulting  graphs  for  each  function.  The  left  picture  shows  the  fitness  
development.  On  the  right  side,  the  graphs  describe  the  “closeness”  and  the  “georank”  
for  the  two  neighbourhood  methods.  Note  that  the  y- axis  on  the  fitness  plots  is  
logarithmic.  

Fig. 1  Fitness  and  geographical  data  for  the  sphere  function

Fig. 2  Fitness  and  geographical  data  for  the  rastrigin  function



Fig. 3  Fitness  and  geographical  data  for  the  griewank  function

5.1  Geometrical  discussion

For  the  discussion  of  the  geometric  properties  we  are  concerned  with  the  graphs  on  
the  right  of  figure  1 through  3. 
With  all  functions,  the  closeness  of  a  particle  to  its  neighbours  declines  and  converges  
after  about  200  to  300  iterations.  As  could  be  expected,  geographical  neighbourhood  
reaches  much  smaller  distances  between  neighbours  much  faster.  This  is  due  to  the  
fact  that  fixed  neighbours  are  distributed  everywhere  over  the  search  space  when  the  
algorithm  starts.  Geographical  neighbourhood,  on  the  other  hand,  is  defined  
dynamically  on  the  very  basis  of  closeness.  Nevertheless,  the  swarm  with  fixed  
neighbourhood  will  reach  the  same  level  of  closeness  at  the  point  of  convergence  with  
the  sphere  and  the  griewank  function  (and  even  lower  values  shortly  in  between).
The  georank  measure  is  always  0.5  for  the  geographical  neighbourhood.  This  could  be  
expected,  because  as  the  closest  neighbour  has  georank  0,  the  two  closest  neighbours  
have  an  average  georank  of  (0+1)/2  =  0.5.  For  fixed  neighbourhood,  the  results  are  
more  interesting:  we  observe  two  phases.  The  first  starts  at  around  37.5  (or  75/2,  half  
of  the  swarm  size),  which  we  would  expect  from  a  random  initial  distribution.  We 
observe  a  decline  in  the  very  beginning  of  the  run,  followed  by  an  increase  to  
somewhere  between  20  and  30.  From  there,  the  second  phase  lets  the  georank  
measure  decrease  again  to  values  at  around  10.
If  we  regard  the  two  observed  phases  in  the  georank  measure  as  exploration  and  
exploitation,  the  “bump”  makes  sense:  In  the  beginning,  particles  in  the  swarm  with  
fixed  neighbourhood  orient  towards  their  neighbours  that  are  distributed  over  the  
whole  search  space.  This  is  the  exploration  phase.  In  this  phase,  the  particles  build  up  
much  higher  velocities  than  particles  in  the  swarm  with  geographical  neighbourhood.  
See  formula  (1):  The  next  velocity  is  socially  influenced  by  the  distance  between  a 
particle  and  its  best  neighbour.  High  distances  lead  to  high  velocities.  So  the  
disposition  to  travel  with  a  high  velocity  can  be  read  from  the  closeness  graph  (we can  
also  explain  the  higher  slope  for  the  closeness  graph  with  fixed  neighbourhood  like  
this:  High  velocities  lead  to  a faster  decrease  in  distances).
When  the  swarm  has  found  together,  the  georank  measure  will  increase  again,  for  
particles  move  at  relatively  high  velocities  within  a  small  space.  The  second  phase  is  
the  exploitation  phase.  Velocities  decrease  for  two  reasons:  The  closeness  measure  of  
the  particles  decreases  as  does  the  momentum  weight.  In  the  exploration  phase  the  
swarm  found  together.  Now  it's  the  neighbours  that  find  each  other  by  exploiting  the  



space  between  them.
The  swarm  with  geographical  neighbourhood,  however,  has  not  had  a long  exploration  
phase.  Neighbours  start  finding  each  other  from  the  start  with  no  need  for  high  
velocities  to  explore  much  of  space.

5.2  Fitness  discussion

We are  now  concentrating  on  the  left  graphs  of  figure  1  through  3,  each  plotting  the  
global  best  and  the  average  local  best  at  each  iteration.  We observe  that  the  swarm  
with  geographical  neighbourhood  converges  on  higher  fitness  values  as  the  swarm  
with  fixed  neighbourhood  is  able  to  reach.  At  least  this  is  the  case  for  personal  bests.  
The  global  best  values  for  the  sphere  and  griewank  function  are  competitive,  but  
within  the  last  iterations,  we  observe  convergence.  For  the  rastrigin  function,  we  don't  
see  convergence,  but  global  best  values  that  are  not  competitive  with  fixed  
neighbourhood.
The  premature  convergence  for  this  swarm  can  be  explained  by  the  geographical  
discussion  in  section  5.1.  Because  it  does  not  pick  up  high  velocities,  the  swarm  with  
geographical  neighbourhood  is  exploiting  almost  from  the  beginning  on.  The  
decreasing  momentum  weight  leads  to  further  decrease  in  velocities.  Without  high  
velocity,  the  probability  of  finding  good  solutions  is  very  low.

5.3  Variance  discussion

Find  the  graphs  describing  the  variance  at  iterations  100,  200  and  300  (and  400  and  
500  for  griewank)  according  to  formula  (3) below.

Fig. 4  Variation  with  sphere  function  Fig. 5  Variation  with  rastrigin  
function



Fig. 6  Variation  with  griewank  function

With  every  function,  we  see  that  the  variance  in  swarms  with  geographical  
neighbourhood  decreases  slower,  which  matches  the  expectation.  Slower  particles  will  
decrease  variance  slower.  With  the  sphere  function,  swarms  with  both  kinds  of  
neighbourhood  reach  an  equal  level  of  variance  after  200  iterations.  With  the  rastrigin  
function,  geographical  neighbourhood  is  near  the  level  of  fixed  neighbourhood  after  
300  iterations.  With  the  griewank  function,  we  observe  that  the  variance  of  fixed  
neighbourhood  stays  on  a  higher  level  than  fixed  neighbourhood.  Also,  the  variance  
with  both  topologies  is  considerably  high  within  the  first  200  iterations.  
While  we  note  that  in  most  cases,  geographical  neighbourhood  loses  almost  as  much  
variance  on  the  long  run  as  fixed  neighbourhood,  the  differences  in  variance  on  the  
way  there  can  be  quite  large.  For  instance,  at  200  generations,  with  the  rastrigin  
function  we  see  about  100% more  variance  in  geographical  neighbourhood  and  with  
the  griewank  function  about  500%. This  is  not  saying  much  about  the  significance  of  
that  variance  in  terms  of  adaptability  of  the  swarms  to  changing  conditions  (see  
Carlisle,  Dosier  [3]),  but  it  might  be  a  starting  point  for  further  investigation  on  
dynamically  changing  environments  and  geographical  neighbourhood.  

I  will  now  reconsider  the  two  hypothesis  made  in  the  introduction.  The  first  
hypothesis  was  that  a  PSO search  with  fixed  neighbourhoods  will gradually  turn  into  a  
search  with  geographical  neighbourhood.  The  closeness  measure  shows  that  this  is  
indeed  true.  The  distances  between  neighbours  in  both  topologies  are  hard  to  
distinguish  in  the  end  of  the  runs.  In  between  fixed  neighbourhood  performs  even  
better  on  that  scale.
I also  hypothesized  that  for  geographical  neighbourhood,  the  exploration /exploitation  
-  trade- off  will  tend  to  exploitation.  This  also  seems  to  be  true,  and  the  implications  
in  the  fitness  plots  are  dramatic.

Thus,  the  very  nature  of  swarms  with  a  fixed  neighbourhood  topology  seems  to  be  
that  they  go  through  two  phases:  They  take  advantage  of  an  initial  random  
distribution  to  explore  at  high  velocity  and  then  they  turn  to  exploitation  when  they  
found  together  and  velocities  become  lower.  In  terms  of  achieving  explorative  
behaviour,  fixed  neighbourhood  topologies  have  randomness  in  their  favour.  
Geographical  neighbourhood  topologies,  on  the  other  hand,  seem  to  miss  a  
comparable  mechanism  to  explore  a search  space.



6.  Conclusions  & Future  Work

In  this  paper  I  introduced  geographical  neighbourhood  for  Particle  Swarm  
Optimization.  I  introduced  a  simple  algorithm  to  compute  Euclidean  distance  and  
discussed  its  complexity  as  well  as  possible  further  improvements.  I  conducted  a 
standard  PSO  experiment  comparing  geographical  and  fixed  neighbourhood.  The  
results  showed  that  swarms  with  geographical  neighbourhood  do  not  reach  
comparable  fitness  values  as  swarms  with  fixed  neighbourhood  do.  Geographical  
measures  such  as  closeness  of  neighbours,  geometrical  neighbourhood  rank  and  
variance  of  positions  allowed  learning  about  the  behaviour  of  both  geographical  and  
fixed  topologies.  The  hypothesis  that  swarms  with  fixed  topologies  explore  because  of  
random  distribution  and  then  exploit  because  of  emerged  geographical  
neighbourhood  seems  to  hold.  
The  observation  that  swarms  with  geographical  neighbourhood  retain  higher  variances  
of  positions  might  be  interesting  when  the  environment  is  not  static,  but  changes  
gradually  over  time.  Future  work  could  explore  the  performance  of  geographical  
neighbourhood  on  such  environments.
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