
Geographical Neighbourhood in Particle Swarm

Optimization

Nicolas Höning

School of Computer Science & Informatics
University College Dublin

Abstract
In Particle Swarm Optimization (PSO) with local neighbourhood, the

social part of change in the particle's velocity is computed considering
the performance of a set of neighbours. Almost all of the literature uses

neighbourhood relations of a fixed topology. This paper introduces a
method that computes a local optimum based on geographical, non- fixed

neighbourhood in Euclidian space. It compares the two approaches in performance
and geographical behaviour. The results show that swarms with geographical

neighbourhood perform worse in terms of fitness. Furthermore, the results indicate
that swarms with fixed topologies start by exploring the search space due to
initial random distribution and then turn to exploitation because of emerged

geographical neighbourhood.

1. Introduction

Particle Swarm Optimization (PSO) is an algorithm with a natural inspiration. By
guiding the movements of individual particles in a multi - dimensional space with
simple rules, it was initially intended to simulate the behaviour of flocking birds. Only
some time later it became clear that the multi - dimensional space could be viewed as a
search space with each particle being a possible solution to the problem in question.
PSO resides in the same family of algorithms as Genetic Algorithms (GA), because both
operate against a fitness function that describes the problem and update their
population stepwise.
The update process of the particles velocities in the swarm constitutes the algorithm.
Therein, each particle communicates the best solution found so far to neighbouring
particles. This information, the so- called local best, is then incorporated into the
update. The communication depends on the topology implemented in the swarm. If
every particle is connected to every other particle, the local best is a global best. The
research has been concentrated on topologies with fixed relations. That way, each
particle will speak with the same neighbours over the whole course of the search, no
matter where they are. I will implement a non- fixed neighbourhood that is defined by
proximity in Euclidean space and compare the behaviour to a traditional, fixed
topology.

The first hypothesis: With fixed neighbourhood, I expect the differences in
neighbourhood distances to become smaller while the number of runs increases - a
kind of geographical neighbourhood emerges in the traditional, fixed topology.

The second hypothesis concerns the first iterations of the algorithm: Comparing the
two approaches, I suspect that with geographical neighbourhood, the
exploration /exploitation – trade- off will tend to exploitation, because geographic
neighbours explore the neighbourhood together (see section 2 for an introduction to
the exploration /exploitation dilemma).
I figure that fixed neighbourhood is another factor of randomness that acts in favour
of exploration: Since particles that are fixed neighbours tend to start on different
locations in the search space (because they are randomly scattered there) they will - in

the first iterations - explore much of the room between them quickly, because the ones
with bad solutions drift towards their best neighbour.

This paper is organized as follows: Section 2 introduces the PSO algorithm formally.
Section 3 motivates geographical consideration of particle swarms and describes the
algorithm I used to compute it. In section 4 and 5 I describe the experiment setup and
results, respectively. Section 6 concludes the paper and provides an outlook on further
work.

2. The PSO algorithm

Each particle in the swarm has a value for each dimension of the solution space and
thereby describes its current position. Each particle also has a velocity for each
dimension, describing its movement through the solution space. All those values are
initialized randomly.
The algorithm is shown in formula (1). Its task consists in updating the velocity as the
particles move through the solution space (With the new velocity new_vel , the new
position new_pos can then easily be computed by adding the velocity vector new_vel to
the vector of the current position, cur_pos).
The algorithm works by orienting each particle, for each dimension d , according to
three things: its current velocity cur_vel , the best position it ever visited (pbest) and
the best position one of its neighbours ever visited (lbest). Kennedy [5] calls
orientation after pbest the 'cognitive' part, while orientation after lbest is called the
'social' part.

Formula (1) The PSO Algorithm

The algorithm can be tweaked with in many ways. The 'cognitive' and 'social' parts can
be weighted via the constants cc and sc. They also get randomized by cr and sr .
To control the range of values in the particles, it's also common to specify an
initialization range from which start - values are randomly chosen. Furthermore (not
shown in formula (1)), a technique called “velocity clamping” can be applied: The
values for the velocity are restricted to be in a given range. This protects particles
from becoming too fast.

The PSO algorithm faces, like every search algorithm, the dilemma between
exploration and exploitation. The particle swarm should explore much of the search
space to avoid local optima. But it should also exploit promising solutions to find real
good solutions. One way to address this problem is to limit the velocity of the
particles by a momentum weight. In (1), this factor is represented by m . Some
researchers prefer to set it to a value below 1, like 0.7. Others gradually decrease its
value over the time of the run.
Another way of looking at the problem is the social part of the algorithm. The
behaviour of a particle swarm includes an independent search by each particle as well
as a communication within the swarm about good solutions. This communication also
plays a role in the exploration /exploitation - dilemma. For instance, the faster the news
of a good solution spreads within the population, the higher is the risk of it becoming
a local optimum because other particles, attracted by the knowledge of the good
solution, stop exploring for better solutions. Many different fixed topologies have
been discussed (Kennedy, Mendes [6]; Richards, Ventura [7], Suganthan [8]). For
example, the so- called “star”- topology, in which every particle knows about every
other particles personal best, is mostly considered as able to reach good solutions
quickly, but it is also in danger of converging on local optima.

The most - widely used fixed topology is the “ring”- topology (every particle with an
index i has two neighbours, namely those with index i- 1 and i+1). I will use it to
compare fixed with geographical neighbourhood.

3. Geographical Neighbourhood

3.1 Motivation

While the original inspiration to the Particle Swarm Algorithm stems from nature, it's
now mostly being used for optimization purposes. For that purpose, several methods
can be applied to achieve efficiency, though they sometimes lead away from the
original idea. In a swarm of insects (or birds, or fish) each particle will try to stay near
to its geographical neighbours. In which way this exactly happens, is unclear. Still, the
common method in PSO research is to define neighbourhood relations that are fixed
for the whole search. Geographical relations have not yet been studied very much. The
fixed neighbourhood is certainly an artificial situation. It's therefore interesting to
study geographical neighbourhood to learn more about nature itself.
For example, geographical neighbourhood can be of use for behavioural models, to the
extent of studying human behaviour in social science contexts (Kennedy [5] addresses
it shortly). Psychological findings tell us that humans are influenced by peer groups.
But peer groups are not fixed. Following this thought even further, if the values that
the individual particles carry would resemble real properties, why would two particles
listen to each other, even if they are not at all alike (recall that the properties of the
particles are randomized at the beginning of the algorithm)? In nature, a great part of
attraction between individual organisms can be explained by their similarities. (There
has also recently been shown that humans are attracted towards mates with different
traits, such as a different immune system. Nevertheless, mating is mostly about
similar traits.)

Furthermore, if differences between the two approaches can be described and
explained, we might learn more about fixed neighbourhood, the method widely used.
For instance, if any of the hypotheses can be shown to hold, we can make interesting
statements about the behaviour of PSO algorithms with fixed neighbourhood
topologies that haven't been clear before. We might also learn more about fixed
neighbourhood while we focus the discussion on geographical properties. In addition
to the classical fitness measures, I will introduce measures that deal with geographic
properties of the particles neighbourhood relations.

.
3.2 The Algorithm

Geographical distance in a multidimensional space can easily be computed by the
Euclidean distance metric. Let a and b be two particles and dims the number of
dimensions in the solution space. The Euclidean distance between a and b is defined
by the square root of the sum of the squared distances of the particle's values per
dimension (see Formula (2)).

Formula (2) The Euclidean distance metric

While the Euclidean distance measure is easy to understand, the algorithm to
determine which of all the other particles possibly are neighbours has uncomfortable
runtime properties.

The algorithm has to define, for a given particle, which particles have the smallest
Euclidean distance to it. The simplest method would be to simply compute the
distance to every other particle and sort the results with respect to Euclidean distance
in ascending order. This method is exact, but resource - consuming. It compares every
particle to every other particle, with a calculation that involves adding up every
dimension. If we assume that the number of particles is much higher than the number
of dimensions (this would be a reasonable setup), the problem complexity class is still
O(n 2). Also, recall that this calculation is only per iteration.
There are a number of heuristics one could apply to shorten the runtime of the
algorithm. One idea might be to setup a radius in which to look for particles and
constantly widen it, until enough possible neighbours are in. We could exclude
particles even faster if we compare the distances dimension - wise, instead of
computing the Euclidean distance (in two- dimensional space that could be visualized
as a squared search window rather than a round search spotlight). A good radius to
start with could be the distance to the nearest neighbour of the last iteration. The
problem with this approach is that our data structure doesn't allow testing a region
for particles. Particles have no vision. Unless we introduce a spatial - indexed data
structure, we would compare all the particles again, ending up in the same complexity
class.
We could also avoid comparing all particles by sorting neighbours in the array of
particles next to each other once we identified them as neighbours. This would
shorten the time to find near particles. But then we would lose exactness. We would
only need to test some particles instead of all, but we might overlook others that are
much nearer.
The implications of these heuristics for the behaviour of the PSO algorithm are
unclear. It might be possible to be much more efficient and still achieve reasonable
search behaviour. Since the goal of this paper is a comparison between geographical
and fixed neighbourhood, I will be using the simplest method without any heuristics.

4. Methods

For this paper an experiment on PSO was conducted with three functions that are
widely used in research on evolutionary algorithms (see Richards, Ventura[7] - also for
graphical views on two- dimensional landscapes - and Angeline [2]). They are
introduced below. The experiment tested geographical neighbourhood as introduced
in section 3 against a fixed neighbourhood with the ring topology mentioned in
section 2. Both used a neighbourhood of two neighbours to find their lbest . See section
4.2 for details on the experiment setup.
The first hypothesis is that a PSO search with fixed neighbourhoods will gradually
turn into a search with geographical neighbourhood. To test this, two values were
measured: The average distance a particle has to its two neighbours (“closeness”) and
the average rank its neighbours have on a scale that ranks all particles with respect to
the Euclidean distance to the particle in question (“georank”).
The second hypothesis is that geographical neighbourhood will lead to a more
exploitative behaviour in the beginning of the search. To test for this, the fitness of
the swarms was measured in the classical way: The average of the personal bests of all
particles was recorded as well as the global best of the whole swarm.
The experiment also measured the variance of the data. So at every 100 iterations
during the run the variance in the positions of the swarms was measured. Variance is
a statistical method to measure how alike the entries in a vector are (the vector in this
case would be the values of one dimension over all particles in the swarm). It sums
over the squares of the distances between the entries and the mean of all entries of
that vector and then computes the mean of that sum. I was interested in the variance
on each dimension to measure how far spread the population is. So, for n particles,
formula (3) describes the algorithm.

Formula (3) The variance measure for a particle swarm

Of course, for each trial, the mean variance of all 30 swarms was taken into account.

4.1 Test functions

This subsection introduces the test functions that were used in the experiments. All of
them were treated as minimizing problems.

Sphere The sphere function maximizes the absolute value on each dimension. It is
therefore not a difficult problem to solve, but a good way to test the optimizing ability
of an algorithm.

Formula (4) The sphere function

Rastrigin This is a function that has a lot of local optima that might deceive the
algorithm.

Formula (5) The rastrigin function

Griewank The griewank function adds a lot of noise that can be deceiving the
algorithm to exploit local optima.

Formula (6) The griewank function

4.2 Setup

The experiment used a swarm size of 75 and a dimensionality of 10. The swarms were
allowed to search for 300 iterations with the sphere and the rastrigin function and for
500 iterations with the griewank function (according to Angeline [2]). The results were
averaged over 30 trials on each problem. The randomizer was the Mersenne Twister of
Python 2.4. The particles values were initialized in the range of - 15 to 15 for each
problem. Both the cognitive and the social weight were set to 1.5. Finally, the values
for the velocity were restricted to be within the range of - 4 to 4 and the algorithms
activity was also cooled down by gradually decreasing the momentum weight from 1.0
to 0.4 over the iterations.

5. Results

Below are the resulting graphs for each function. The left picture shows the fitness
development. On the right side, the graphs describe the “closeness” and the “georank”
for the two neighbourhood methods. Note that the y- axis on the fitness plots is
logarithmic.

Fig. 1 Fitness and geographical data for the sphere function

Fig. 2 Fitness and geographical data for the rastrigin function

Fig. 3 Fitness and geographical data for the griewank function

5.1 Geometrical discussion

For the discussion of the geometric properties we are concerned with the graphs on
the right of figure 1 through 3.
With all functions, the closeness of a particle to its neighbours declines and converges
after about 200 to 300 iterations. As could be expected, geographical neighbourhood
reaches much smaller distances between neighbours much faster. This is due to the
fact that fixed neighbours are distributed everywhere over the search space when the
algorithm starts. Geographical neighbourhood, on the other hand, is defined
dynamically on the very basis of closeness. Nevertheless, the swarm with fixed
neighbourhood will reach the same level of closeness at the point of convergence with
the sphere and the griewank function (and even lower values shortly in between).
The georank measure is always 0.5 for the geographical neighbourhood. This could be
expected, because as the closest neighbour has georank 0, the two closest neighbours
have an average georank of (0+1)/2 = 0.5. For fixed neighbourhood, the results are
more interesting: we observe two phases. The first starts at around 37.5 (or 75/2, half
of the swarm size), which we would expect from a random initial distribution. We
observe a decline in the very beginning of the run, followed by an increase to
somewhere between 20 and 30. From there, the second phase lets the georank
measure decrease again to values at around 10.
If we regard the two observed phases in the georank measure as exploration and
exploitation, the “bump” makes sense: In the beginning, particles in the swarm with
fixed neighbourhood orient towards their neighbours that are distributed over the
whole search space. This is the exploration phase. In this phase, the particles build up
much higher velocities than particles in the swarm with geographical neighbourhood.
See formula (1): The next velocity is socially influenced by the distance between a
particle and its best neighbour. High distances lead to high velocities. So the
disposition to travel with a high velocity can be read from the closeness graph (we can
also explain the higher slope for the closeness graph with fixed neighbourhood like
this: High velocities lead to a faster decrease in distances).
When the swarm has found together, the georank measure will increase again, for
particles move at relatively high velocities within a small space. The second phase is
the exploitation phase. Velocities decrease for two reasons: The closeness measure of
the particles decreases as does the momentum weight. In the exploration phase the
swarm found together. Now it's the neighbours that find each other by exploiting the

space between them.
The swarm with geographical neighbourhood, however, has not had a long exploration
phase. Neighbours start finding each other from the start with no need for high
velocities to explore much of space.

5.2 Fitness discussion

We are now concentrating on the left graphs of figure 1 through 3, each plotting the
global best and the average local best at each iteration. We observe that the swarm
with geographical neighbourhood converges on higher fitness values as the swarm
with fixed neighbourhood is able to reach. At least this is the case for personal bests.
The global best values for the sphere and griewank function are competitive, but
within the last iterations, we observe convergence. For the rastrigin function, we don't
see convergence, but global best values that are not competitive with fixed
neighbourhood.
The premature convergence for this swarm can be explained by the geographical
discussion in section 5.1. Because it does not pick up high velocities, the swarm with
geographical neighbourhood is exploiting almost from the beginning on. The
decreasing momentum weight leads to further decrease in velocities. Without high
velocity, the probability of finding good solutions is very low.

5.3 Variance discussion

Find the graphs describing the variance at iterations 100, 200 and 300 (and 400 and
500 for griewank) according to formula (3) below.

Fig. 4 Variation with sphere function Fig. 5 Variation with rastrigin
function

Fig. 6 Variation with griewank function

With every function, we see that the variance in swarms with geographical
neighbourhood decreases slower, which matches the expectation. Slower particles will
decrease variance slower. With the sphere function, swarms with both kinds of
neighbourhood reach an equal level of variance after 200 iterations. With the rastrigin
function, geographical neighbourhood is near the level of fixed neighbourhood after
300 iterations. With the griewank function, we observe that the variance of fixed
neighbourhood stays on a higher level than fixed neighbourhood. Also, the variance
with both topologies is considerably high within the first 200 iterations.
While we note that in most cases, geographical neighbourhood loses almost as much
variance on the long run as fixed neighbourhood, the differences in variance on the
way there can be quite large. For instance, at 200 generations, with the rastrigin
function we see about 100% more variance in geographical neighbourhood and with
the griewank function about 500%. This is not saying much about the significance of
that variance in terms of adaptability of the swarms to changing conditions (see
Carlisle, Dosier [3]), but it might be a starting point for further investigation on
dynamically changing environments and geographical neighbourhood.

I will now reconsider the two hypothesis made in the introduction. The first
hypothesis was that a PSO search with fixed neighbourhoods will gradually turn into a
search with geographical neighbourhood. The closeness measure shows that this is
indeed true. The distances between neighbours in both topologies are hard to
distinguish in the end of the runs. In between fixed neighbourhood performs even
better on that scale.
I also hypothesized that for geographical neighbourhood, the exploration /exploitation
- trade- off will tend to exploitation. This also seems to be true, and the implications
in the fitness plots are dramatic.

Thus, the very nature of swarms with a fixed neighbourhood topology seems to be
that they go through two phases: They take advantage of an initial random
distribution to explore at high velocity and then they turn to exploitation when they
found together and velocities become lower. In terms of achieving explorative
behaviour, fixed neighbourhood topologies have randomness in their favour.
Geographical neighbourhood topologies, on the other hand, seem to miss a
comparable mechanism to explore a search space.

6. Conclusions & Future Work

In this paper I introduced geographical neighbourhood for Particle Swarm
Optimization. I introduced a simple algorithm to compute Euclidean distance and
discussed its complexity as well as possible further improvements. I conducted a
standard PSO experiment comparing geographical and fixed neighbourhood. The
results showed that swarms with geographical neighbourhood do not reach
comparable fitness values as swarms with fixed neighbourhood do. Geographical
measures such as closeness of neighbours, geometrical neighbourhood rank and
variance of positions allowed learning about the behaviour of both geographical and
fixed topologies. The hypothesis that swarms with fixed topologies explore because of
random distribution and then exploit because of emerged geographical
neighbourhood seems to hold.
The observation that swarms with geographical neighbourhood retain higher variances
of positions might be interesting when the environment is not static, but changes
gradually over time. Future work could explore the performance of geographical
neighbourhood on such environments.

References

[1] Angeline, P. 1998: Evolutionary Optimization Versus Particle Swarm Optimization in
Proceedings of the 7th International Conference on Evolutionary Programming VII, pp
601- 610
[2] Angeline, P. 1998: Using Selection To Improve Particle Swarm Optimization in
Evolutionary Computation Proceedings, pp 84- 89
[3] Carlisle, Dosier 2000: Adapting Particle Swarm Optimization To Dynamic
Environments in Proceedings of International Conference on Artificial Intelligence
[4] Eberhart, R. and Shi, Y. 1998: Comparison between Genetic Algorithms and Particle

Swarm Optimization in Proceedings of the 7th International Conference on
Evolutionary Programming VII, pp 611- 616
[5] Kennedy, 1997: The Particle Swarm: Social Adaptation Of Knowledge in IEEE
International Conference on Evolutionary Computation, 1997 , pp 303- 308
[6] Kennedy, Mende s 2002 : Population Structure and Particle Swarm Performance in
CEC '02. Proceedings of the 2002 Congress on Evolutionary Computation, 2002 , pp
1671- 1676
[7] Richards M., Ventura D. 2002: Dynamic Sociometry in Particle Swarm Optimization
in International Conference on Computational Intelligence and Natural Computing,
North Carolina, 2003
[8] Suganthan 1999: Particle Swarm Optimizer With Neighbourhood Operator in CEC
99. Proceedings of the 1999 Congress on Evolutionary Computation, 1999, pp 1557-
1962

http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=5621

