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organizational issues

I sorry for the late homework results. we’re having some
technical problems...
almost all of them were really fine, so don’t worry :-)
we need to get all of you in groups, so what about these
people:
Anna-Antonia Pape, Benjamin Wulff, Janine Yvonne
Willbrand, Da Sheng Zhang, Annett Wegner, Gunther
Baumgartner, Arthur Legler, Jonas Volger, Yvonne Eberl,
Johannes Emden

I we also found out yesterday that the Prolog system on VIPS
didn’t always show all error messages :-(
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organizational issues

I I am here to make your work easier.
So if there is anything you want to talk about or that should
be done differently, don’t hesitate to tell me.

I that also includes repititions. if we need to reconsider some
basic concepts in order for you to really get them, then that is
really worth the time. Ask me!
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built-in predicates are not for free

I this week’s homework suggests to have a look at the manual
to find a built-in predicate that appends a list to another list
(it’s uploaded in Stud.IP and called ”learn prolog.pdf” and it’s
really readable. check it out.)

I you should especially read chapter 6. It might help with that
exercise, but mostly it helps to really grasp that damn
recursion thing.
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built-in predicates are not for free

I you would also learn that append is inefficient, because it
always works up and down the same list. As we will later deal
with efficiency a lot, this is good to understand right at the
beginning.
Average programmers think of using a library function as one
call, good programmers care about the implementation of that
library function.

I if you have time on the bus, read this brilliant essay by Joel
Spolsky about that topic (not Prolog-related, but a good
read).
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http://www.joelonsoftware.com/articles/fog0000000319.html
http://www.joelonsoftware.com/articles/fog0000000319.html


topics
organizational issues

some random tips and tricks
Gauss reconsidered

built-in predicates are not for free
base cases: ”once” vs ”every time”

built-in predicates are not for free

I you would also learn that append is inefficient, because it
always works up and down the same list. As we will later deal
with efficiency a lot, this is good to understand right at the
beginning.
Average programmers think of using a library function as one
call, good programmers care about the implementation of that
library function.

I if you have time on the bus, read this brilliant essay by Joel
Spolsky about that topic (not Prolog-related, but a good
read).
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http://www.joelonsoftware.com/articles/fog0000000319.html
http://www.joelonsoftware.com/articles/fog0000000319.html


topics
organizational issues

some random tips and tricks
Gauss reconsidered

built-in predicates are not for free
base cases: ”once” vs ”every time”

base cases: ”once” vs ”every time”

I we already said that a base case is, most of the time, just the
simplest case imaginable

I now, if your predicate is asked to do something once, it is even
easier: you don’t want the predicate to proceed to the simplest
case, but stop once something is done the first time. Right?

I a situation where that something is done, is your base case.

I a base case returns true and does not proceed. perfect.

I the base case can be the distinction between ”once” and
”every time”
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last weeks Gauss: the limitations

I do you remember last week’s gauss(X,Y)-predicate to
calculate this formula?

I
x∑

i=0

i =
x

2
(x + 1)
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last weeks Gauss: the limitations

I gauss(X, ) :- X < 0, !, fail.
gauss(0,0).
gauss(X,Y) :-

X1 is X - 1,
Y1 is Y - X,
gauss(X1,Y1).

I it needed both X and Y instantiated. Why?

I When you do not know X, and of course you don’t yet know
X1, the term X1isX − 1 has infinitely many solutions. The
same holds for Y 1isY − X
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Nicolas Höning Tutorium to Introduction to AI, 3rd week - Nicolas Höning
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Argument usage

I So you (we) should always care about this issue when we
document our program: What terms need to be instantiated?

I from the lecture: Argument usage
+ means: value must be provided
- means: must be free, value will be computed
? can be either free or a value

I so last week’s Gauss was gauss(+X,+Y)

I let’s think about gauss(+X,-Y) now
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Nicolas Höning Tutorium to Introduction to AI, 3rd week - Nicolas Höning
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gauss(+X,-Y)

I our only base case is still gauss(0,0). The problem is that we
cannot substract from Y till we reach zero, because we have
no idea what Y could be in the first place.

I can’t we add every X up to reach Y while we decrement X to
zero? How could we tell Prolog to do that?

I How can we decrement X to zero, from the first call down to
the base case, while we add all those Xes up to Y, beginning
at the base case?
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left recursion: a simple example

I ok, take a break, look at this simple predicate here:
recurse([]).
recurse([H|Rest]) :-

writeln(’right... H is ’+H),
recurse(Rest),
writeln(’left.... H is ’+H).

I it does nothing but recurse down a list until it is empty.
Besides, it tells you what is the the actual head of the list.
Twice.

I Once in right-recursion-style and once in left-recursion-style.
Now what will be the output of recurse([a,b,c,d]).?
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left recursion: a simple example

I this is the output of recurse([a,b,c,d]).:
right... H is +a
right... H is +b
right... H is +c
right... H is +d
left.... H is +d
left.... H is +c
left.... H is +b
left.... H is +a

I we see the way to the base case, and then we see the way
back from it.
down the recursion tree and up again.

I Now, right recursion is the usual way to go, but left recursion
seems to make sense for some problems...
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gauss(+X,-Y)

I ok, we should change our gauss example, but just a little:

I /* gauss with X(+X,-Y) */
gauss with X(X, ) :- X < 0, !, fail.
gauss with X(0,0).
gauss with X(X,Y) :-

X1 is X - 1,
gauss with X(X1,Y1),
Y is Y1 + X.

I the only changes are switching the last two lines, so we
compute Y in left recursion (after it has been instantiated to
zero by the base case), and using addition to compute Y
instead of substraction.

Nicolas Höning Tutorium to Introduction to AI, 3rd week - Nicolas Höning
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gauss(-X,+Y)

I ok, now what about gauss(-X,+Y)? Can we do it the same
way?

I the problem is: we cannot decrement Y just as easy as X. X
was decremented by one, Y would be decremented by an X we
don’t yet know.

I I’ll use another interesting technique to solve that one: the
accumulator.
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accumulators: why?

I ok, the problem again: if we have Y but no X, we cannot
decrement Y till we reach zero, because we don’t know by
what we should decrement. We only have an X parameter that
should hold the X we are looking for but is not instantiated

I well... we could instantiate X with zero and increment it by
one with every step. Then we could decrement Y by that X
and if it comes down to zero, we incremented X up to the one
we were looking for!

I But if we instantiate X with zero in the first place, we will
never get to see that incremented X that comes up in the
base case :-(

I so how about introducing another dummy parameter?
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accumulators: what?

I an accumulator is a name for another technique while using
recursion.
It adresses just this problem we had by introducing another
parameter that is instantiated empty (say, [] or 0).

I this parameter is then recursively changed until the base case
is reached.

I there the parameter we want to instantiate with the solution
(here: X) is instantiated with the accumulator, passed up the
recursion tree, and we’re done.

I This technique does no harm to the efficiency of your program
(you’ll find it again in that chapter 6 I talked about earlier).
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I This technique does no harm to the efficiency of your program
(you’ll find it again in that chapter 6 I talked about earlier).
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gauss(-X,+Y)

I ok, let’s do this: Z is our accumulator:
gauss with Y 2( ,Y, ) :- Y < 0, !, fail.

gauss with Y 2(X,0,X).
gauss with Y 2(X,Y,Z) :-

Z1 is Z + 1,
Y1 is Y - Z1,
gauss with Y 2(X,Y1,Z1).

I we’ll add it up from zero to the value that X should have.
Then we unify it with X and pass X up the recursion tree

I we’re back to good old right recursion again
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gauss(-X,+Y): cleaning up

I ok, the user probably doesn’t want to call
gauss with Y2(X,5050,0).

I /* gauss with Y(-X,+Y)
this pipes the problem to our
special accumulator predicate */
gauss with Y(X,Y) :-

gauss with Y 2(X,Y,0).
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gauss(X,Y): cleaning up

I and now we let the user call gauss(X,Y) and find out ourselves
if X is in there or Y is:

I gauss(X,Y) :-
number(X),
gauss with X(X,Y).

gauss(X,Y) :-
number(Y),
gauss with Y(X,Y).
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the end

I questions?

Nicolas Höning Tutorium to Introduction to AI, 3rd week - Nicolas Höning
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