
topics
organizational issues

some random tips and tricks
Gauss reconsidered

Tutorium to Introduction to AI, 3rd week -
Nicolas Höning

Nicolas Höning

April 28, 2006

Nicolas Höning Tutorium to Introduction to AI, 3rd week - Nicolas Höning



topics
organizational issues

some random tips and tricks
Gauss reconsidered

organizational issues

some random tips and tricks
built-in predicates are not for free
base cases: ”once” vs ”every time”

Gauss reconsidered
the fruits of left recursion
accumulators

Nicolas Höning Tutorium to Introduction to AI, 3rd week - Nicolas Höning



topics
organizational issues

some random tips and tricks
Gauss reconsidered

organizational issues

I sorry for the late homework results. we’re having some
technical problems...
almost all of them were really fine, so don’t worry :-)
we need to get all of you in groups, so what about these
people:
Anna-Antonia Pape, Benjamin Wulff, Janine Yvonne
Willbrand, Da Sheng Zhang, Annett Wegner, Gunther
Baumgartner, Arthur Legler, Jonas Volger, Yvonne Eberl,
Johannes Emden

I we also found out yesterday that the Prolog system on VIPS
didn’t always show all error messages :-(

Nicolas Höning Tutorium to Introduction to AI, 3rd week - Nicolas Höning



topics
organizational issues

some random tips and tricks
Gauss reconsidered

organizational issues

I sorry for the late homework results. we’re having some
technical problems...
almost all of them were really fine, so don’t worry :-)
we need to get all of you in groups, so what about these
people:
Anna-Antonia Pape, Benjamin Wulff, Janine Yvonne
Willbrand, Da Sheng Zhang, Annett Wegner, Gunther
Baumgartner, Arthur Legler, Jonas Volger, Yvonne Eberl,
Johannes Emden

I we also found out yesterday that the Prolog system on VIPS
didn’t always show all error messages :-(

Nicolas Höning Tutorium to Introduction to AI, 3rd week - Nicolas Höning



topics
organizational issues

some random tips and tricks
Gauss reconsidered

organizational issues

I I am here to make your work easier.
So if there is anything you want to talk about or that should
be done differently, don’t hesitate to tell me.

I that also includes repititions. if we need to reconsider some
basic concepts in order for you to really get them, then that is
really worth the time. Ask me!

Nicolas Höning Tutorium to Introduction to AI, 3rd week - Nicolas Höning



topics
organizational issues

some random tips and tricks
Gauss reconsidered

organizational issues

I I am here to make your work easier.
So if there is anything you want to talk about or that should
be done differently, don’t hesitate to tell me.

I that also includes repititions. if we need to reconsider some
basic concepts in order for you to really get them, then that is
really worth the time. Ask me!

Nicolas Höning Tutorium to Introduction to AI, 3rd week - Nicolas Höning



topics
organizational issues

some random tips and tricks
Gauss reconsidered

built-in predicates are not for free
base cases: ”once” vs ”every time”

built-in predicates are not for free

I this week’s homework suggests to have a look at the manual
to find a built-in predicate that appends a list to another list
(it’s uploaded in Stud.IP and called ”learn prolog.pdf” and it’s
really readable. check it out.)

I you should especially read chapter 6. It might help with that
exercise, but mostly it helps to really grasp that damn
recursion thing.

Nicolas Höning Tutorium to Introduction to AI, 3rd week - Nicolas Höning



topics
organizational issues

some random tips and tricks
Gauss reconsidered

built-in predicates are not for free
base cases: ”once” vs ”every time”

built-in predicates are not for free

I this week’s homework suggests to have a look at the manual
to find a built-in predicate that appends a list to another list
(it’s uploaded in Stud.IP and called ”learn prolog.pdf” and it’s
really readable. check it out.)

I you should especially read chapter 6. It might help with that
exercise, but mostly it helps to really grasp that damn
recursion thing.

Nicolas Höning Tutorium to Introduction to AI, 3rd week - Nicolas Höning



topics
organizational issues

some random tips and tricks
Gauss reconsidered

built-in predicates are not for free
base cases: ”once” vs ”every time”

built-in predicates are not for free

I you would also learn that append is inefficient, because it
always works up and down the same list. As we will later deal
with efficiency a lot, this is good to understand right at the
beginning.
Average programmers think of using a library function as one
call, good programmers care about the implementation of that
library function.

I if you have time on the bus, read this brilliant essay by Joel
Spolsky about that topic (not Prolog-related, but a good
read).

Nicolas Höning Tutorium to Introduction to AI, 3rd week - Nicolas Höning

http://www.joelonsoftware.com/articles/fog0000000319.html
http://www.joelonsoftware.com/articles/fog0000000319.html


topics
organizational issues

some random tips and tricks
Gauss reconsidered

built-in predicates are not for free
base cases: ”once” vs ”every time”

built-in predicates are not for free

I you would also learn that append is inefficient, because it
always works up and down the same list. As we will later deal
with efficiency a lot, this is good to understand right at the
beginning.
Average programmers think of using a library function as one
call, good programmers care about the implementation of that
library function.

I if you have time on the bus, read this brilliant essay by Joel
Spolsky about that topic (not Prolog-related, but a good
read).

Nicolas Höning Tutorium to Introduction to AI, 3rd week - Nicolas Höning

http://www.joelonsoftware.com/articles/fog0000000319.html
http://www.joelonsoftware.com/articles/fog0000000319.html


topics
organizational issues

some random tips and tricks
Gauss reconsidered

built-in predicates are not for free
base cases: ”once” vs ”every time”

base cases: ”once” vs ”every time”

I we already said that a base case is, most of the time, just the
simplest case imaginable

I now, if your predicate is asked to do something once, it is even
easier: you don’t want the predicate to proceed to the simplest
case, but stop once something is done the first time. Right?

I a situation where that something is done, is your base case.

I a base case returns true and does not proceed. perfect.

I the base case can be the distinction between ”once” and
”every time”

Nicolas Höning Tutorium to Introduction to AI, 3rd week - Nicolas Höning



topics
organizational issues

some random tips and tricks
Gauss reconsidered

built-in predicates are not for free
base cases: ”once” vs ”every time”

base cases: ”once” vs ”every time”

I we already said that a base case is, most of the time, just the
simplest case imaginable

I now, if your predicate is asked to do something once, it is even
easier: you don’t want the predicate to proceed to the simplest
case, but stop once something is done the first time. Right?

I a situation where that something is done, is your base case.

I a base case returns true and does not proceed. perfect.

I the base case can be the distinction between ”once” and
”every time”

Nicolas Höning Tutorium to Introduction to AI, 3rd week - Nicolas Höning



topics
organizational issues

some random tips and tricks
Gauss reconsidered

built-in predicates are not for free
base cases: ”once” vs ”every time”

base cases: ”once” vs ”every time”

I we already said that a base case is, most of the time, just the
simplest case imaginable

I now, if your predicate is asked to do something once, it is even
easier: you don’t want the predicate to proceed to the simplest
case, but stop once something is done the first time. Right?

I a situation where that something is done, is your base case.

I a base case returns true and does not proceed. perfect.

I the base case can be the distinction between ”once” and
”every time”

Nicolas Höning Tutorium to Introduction to AI, 3rd week - Nicolas Höning



topics
organizational issues

some random tips and tricks
Gauss reconsidered

built-in predicates are not for free
base cases: ”once” vs ”every time”

base cases: ”once” vs ”every time”

I we already said that a base case is, most of the time, just the
simplest case imaginable

I now, if your predicate is asked to do something once, it is even
easier: you don’t want the predicate to proceed to the simplest
case, but stop once something is done the first time. Right?

I a situation where that something is done, is your base case.

I a base case returns true and does not proceed. perfect.

I the base case can be the distinction between ”once” and
”every time”

Nicolas Höning Tutorium to Introduction to AI, 3rd week - Nicolas Höning



topics
organizational issues

some random tips and tricks
Gauss reconsidered

built-in predicates are not for free
base cases: ”once” vs ”every time”

base cases: ”once” vs ”every time”

I we already said that a base case is, most of the time, just the
simplest case imaginable

I now, if your predicate is asked to do something once, it is even
easier: you don’t want the predicate to proceed to the simplest
case, but stop once something is done the first time. Right?

I a situation where that something is done, is your base case.

I a base case returns true and does not proceed. perfect.

I the base case can be the distinction between ”once” and
”every time”

Nicolas Höning Tutorium to Introduction to AI, 3rd week - Nicolas Höning



topics
organizational issues

some random tips and tricks
Gauss reconsidered

the fruits of left recursion
accumulators

last weeks Gauss: the limitations

I do you remember last week’s gauss(X,Y)-predicate to
calculate this formula?

I
x∑

i=0

i =
x

2
(x + 1)

Nicolas Höning Tutorium to Introduction to AI, 3rd week - Nicolas Höning



topics
organizational issues

some random tips and tricks
Gauss reconsidered

the fruits of left recursion
accumulators

last weeks Gauss: the limitations

I do you remember last week’s gauss(X,Y)-predicate to
calculate this formula?

I
x∑

i=0

i =
x

2
(x + 1)

Nicolas Höning Tutorium to Introduction to AI, 3rd week - Nicolas Höning



topics
organizational issues

some random tips and tricks
Gauss reconsidered

the fruits of left recursion
accumulators

last weeks Gauss: the limitations

I gauss(X, ) :- X < 0, !, fail.
gauss(0,0).
gauss(X,Y) :-

X1 is X - 1,
Y1 is Y - X,
gauss(X1,Y1).

I it needed both X and Y instantiated. Why?

I When you do not know X, and of course you don’t yet know
X1, the term X1isX − 1 has infinitely many solutions. The
same holds for Y 1isY − X

Nicolas Höning Tutorium to Introduction to AI, 3rd week - Nicolas Höning



topics
organizational issues

some random tips and tricks
Gauss reconsidered

the fruits of left recursion
accumulators

last weeks Gauss: the limitations

I gauss(X, ) :- X < 0, !, fail.
gauss(0,0).
gauss(X,Y) :-

X1 is X - 1,
Y1 is Y - X,
gauss(X1,Y1).

I it needed both X and Y instantiated. Why?

I When you do not know X, and of course you don’t yet know
X1, the term X1isX − 1 has infinitely many solutions. The
same holds for Y 1isY − X

Nicolas Höning Tutorium to Introduction to AI, 3rd week - Nicolas Höning



topics
organizational issues

some random tips and tricks
Gauss reconsidered

the fruits of left recursion
accumulators

last weeks Gauss: the limitations

I gauss(X, ) :- X < 0, !, fail.
gauss(0,0).
gauss(X,Y) :-

X1 is X - 1,
Y1 is Y - X,
gauss(X1,Y1).

I it needed both X and Y instantiated. Why?

I When you do not know X, and of course you don’t yet know
X1, the term X1isX − 1 has infinitely many solutions. The
same holds for Y 1isY − X

Nicolas Höning Tutorium to Introduction to AI, 3rd week - Nicolas Höning



topics
organizational issues

some random tips and tricks
Gauss reconsidered

the fruits of left recursion
accumulators

Argument usage

I So you (we) should always care about this issue when we
document our program: What terms need to be instantiated?

I from the lecture: Argument usage
+ means: value must be provided
- means: must be free, value will be computed
? can be either free or a value

I so last week’s Gauss was gauss(+X,+Y)

I let’s think about gauss(+X,-Y) now

Nicolas Höning Tutorium to Introduction to AI, 3rd week - Nicolas Höning



topics
organizational issues

some random tips and tricks
Gauss reconsidered

the fruits of left recursion
accumulators

Argument usage

I So you (we) should always care about this issue when we
document our program: What terms need to be instantiated?

I from the lecture: Argument usage
+ means: value must be provided
- means: must be free, value will be computed
? can be either free or a value

I so last week’s Gauss was gauss(+X,+Y)

I let’s think about gauss(+X,-Y) now

Nicolas Höning Tutorium to Introduction to AI, 3rd week - Nicolas Höning



topics
organizational issues

some random tips and tricks
Gauss reconsidered

the fruits of left recursion
accumulators

Argument usage

I So you (we) should always care about this issue when we
document our program: What terms need to be instantiated?

I from the lecture: Argument usage
+ means: value must be provided
- means: must be free, value will be computed
? can be either free or a value

I so last week’s Gauss was gauss(+X,+Y)

I let’s think about gauss(+X,-Y) now

Nicolas Höning Tutorium to Introduction to AI, 3rd week - Nicolas Höning



topics
organizational issues

some random tips and tricks
Gauss reconsidered

the fruits of left recursion
accumulators

Argument usage

I So you (we) should always care about this issue when we
document our program: What terms need to be instantiated?

I from the lecture: Argument usage
+ means: value must be provided
- means: must be free, value will be computed
? can be either free or a value

I so last week’s Gauss was gauss(+X,+Y)

I let’s think about gauss(+X,-Y) now

Nicolas Höning Tutorium to Introduction to AI, 3rd week - Nicolas Höning



topics
organizational issues

some random tips and tricks
Gauss reconsidered

the fruits of left recursion
accumulators

gauss(+X,-Y)

I our only base case is still gauss(0,0). The problem is that we
cannot substract from Y till we reach zero, because we have
no idea what Y could be in the first place.

I can’t we add every X up to reach Y while we decrement X to
zero? How could we tell Prolog to do that?

I How can we decrement X to zero, from the first call down to
the base case, while we add all those Xes up to Y, beginning
at the base case?

Nicolas Höning Tutorium to Introduction to AI, 3rd week - Nicolas Höning



topics
organizational issues

some random tips and tricks
Gauss reconsidered

the fruits of left recursion
accumulators

gauss(+X,-Y)

I our only base case is still gauss(0,0). The problem is that we
cannot substract from Y till we reach zero, because we have
no idea what Y could be in the first place.

I can’t we add every X up to reach Y while we decrement X to
zero? How could we tell Prolog to do that?

I How can we decrement X to zero, from the first call down to
the base case, while we add all those Xes up to Y, beginning
at the base case?

Nicolas Höning Tutorium to Introduction to AI, 3rd week - Nicolas Höning



topics
organizational issues

some random tips and tricks
Gauss reconsidered

the fruits of left recursion
accumulators

gauss(+X,-Y)

I our only base case is still gauss(0,0). The problem is that we
cannot substract from Y till we reach zero, because we have
no idea what Y could be in the first place.

I can’t we add every X up to reach Y while we decrement X to
zero? How could we tell Prolog to do that?

I How can we decrement X to zero, from the first call down to
the base case, while we add all those Xes up to Y, beginning
at the base case?

Nicolas Höning Tutorium to Introduction to AI, 3rd week - Nicolas Höning



topics
organizational issues

some random tips and tricks
Gauss reconsidered

the fruits of left recursion
accumulators

left recursion: a simple example

I ok, take a break, look at this simple predicate here:
recurse([]).
recurse([H|Rest]) :-

writeln(’right... H is ’+H),
recurse(Rest),
writeln(’left.... H is ’+H).

I it does nothing but recurse down a list until it is empty.
Besides, it tells you what is the the actual head of the list.
Twice.

I Once in right-recursion-style and once in left-recursion-style.
Now what will be the output of recurse([a,b,c,d]).?

Nicolas Höning Tutorium to Introduction to AI, 3rd week - Nicolas Höning



topics
organizational issues

some random tips and tricks
Gauss reconsidered

the fruits of left recursion
accumulators

left recursion: a simple example

I ok, take a break, look at this simple predicate here:
recurse([]).
recurse([H|Rest]) :-

writeln(’right... H is ’+H),
recurse(Rest),
writeln(’left.... H is ’+H).

I it does nothing but recurse down a list until it is empty.
Besides, it tells you what is the the actual head of the list.
Twice.

I Once in right-recursion-style and once in left-recursion-style.
Now what will be the output of recurse([a,b,c,d]).?

Nicolas Höning Tutorium to Introduction to AI, 3rd week - Nicolas Höning



topics
organizational issues

some random tips and tricks
Gauss reconsidered

the fruits of left recursion
accumulators

left recursion: a simple example

I ok, take a break, look at this simple predicate here:
recurse([]).
recurse([H|Rest]) :-

writeln(’right... H is ’+H),
recurse(Rest),
writeln(’left.... H is ’+H).

I it does nothing but recurse down a list until it is empty.
Besides, it tells you what is the the actual head of the list.
Twice.

I Once in right-recursion-style and once in left-recursion-style.
Now what will be the output of recurse([a,b,c,d]).?

Nicolas Höning Tutorium to Introduction to AI, 3rd week - Nicolas Höning



topics
organizational issues

some random tips and tricks
Gauss reconsidered

the fruits of left recursion
accumulators

left recursion: a simple example

I this is the output of recurse([a,b,c,d]).:
right... H is +a
right... H is +b
right... H is +c
right... H is +d
left.... H is +d
left.... H is +c
left.... H is +b
left.... H is +a

I we see the way to the base case, and then we see the way
back from it.
down the recursion tree and up again.

I Now, right recursion is the usual way to go, but left recursion
seems to make sense for some problems...

Nicolas Höning Tutorium to Introduction to AI, 3rd week - Nicolas Höning



topics
organizational issues

some random tips and tricks
Gauss reconsidered

the fruits of left recursion
accumulators

left recursion: a simple example

I this is the output of recurse([a,b,c,d]).:
right... H is +a
right... H is +b
right... H is +c
right... H is +d
left.... H is +d
left.... H is +c
left.... H is +b
left.... H is +a

I we see the way to the base case, and then we see the way
back from it.
down the recursion tree and up again.

I Now, right recursion is the usual way to go, but left recursion
seems to make sense for some problems...

Nicolas Höning Tutorium to Introduction to AI, 3rd week - Nicolas Höning



topics
organizational issues

some random tips and tricks
Gauss reconsidered

the fruits of left recursion
accumulators

left recursion: a simple example

I this is the output of recurse([a,b,c,d]).:
right... H is +a
right... H is +b
right... H is +c
right... H is +d
left.... H is +d
left.... H is +c
left.... H is +b
left.... H is +a

I we see the way to the base case, and then we see the way
back from it.
down the recursion tree and up again.

I Now, right recursion is the usual way to go, but left recursion
seems to make sense for some problems...

Nicolas Höning Tutorium to Introduction to AI, 3rd week - Nicolas Höning



topics
organizational issues

some random tips and tricks
Gauss reconsidered

the fruits of left recursion
accumulators

gauss(+X,-Y)

I ok, we should change our gauss example, but just a little:

I /* gauss with X(+X,-Y) */
gauss with X(X, ) :- X < 0, !, fail.
gauss with X(0,0).
gauss with X(X,Y) :-

X1 is X - 1,
gauss with X(X1,Y1),
Y is Y1 + X.

I the only changes are switching the last two lines, so we
compute Y in left recursion (after it has been instantiated to
zero by the base case), and using addition to compute Y
instead of substraction.

Nicolas Höning Tutorium to Introduction to AI, 3rd week - Nicolas Höning



topics
organizational issues

some random tips and tricks
Gauss reconsidered

the fruits of left recursion
accumulators

gauss(+X,-Y)

I ok, we should change our gauss example, but just a little:

I /* gauss with X(+X,-Y) */
gauss with X(X, ) :- X < 0, !, fail.
gauss with X(0,0).
gauss with X(X,Y) :-

X1 is X - 1,
gauss with X(X1,Y1),
Y is Y1 + X.

I the only changes are switching the last two lines, so we
compute Y in left recursion (after it has been instantiated to
zero by the base case), and using addition to compute Y
instead of substraction.

Nicolas Höning Tutorium to Introduction to AI, 3rd week - Nicolas Höning



topics
organizational issues

some random tips and tricks
Gauss reconsidered

the fruits of left recursion
accumulators

gauss(+X,-Y)

I ok, we should change our gauss example, but just a little:

I /* gauss with X(+X,-Y) */
gauss with X(X, ) :- X < 0, !, fail.
gauss with X(0,0).
gauss with X(X,Y) :-

X1 is X - 1,
gauss with X(X1,Y1),
Y is Y1 + X.

I the only changes are switching the last two lines, so we
compute Y in left recursion (after it has been instantiated to
zero by the base case), and using addition to compute Y
instead of substraction.

Nicolas Höning Tutorium to Introduction to AI, 3rd week - Nicolas Höning



topics
organizational issues

some random tips and tricks
Gauss reconsidered

the fruits of left recursion
accumulators

gauss(-X,+Y)

I ok, now what about gauss(-X,+Y)? Can we do it the same
way?

I the problem is: we cannot decrement Y just as easy as X. X
was decremented by one, Y would be decremented by an X we
don’t yet know.

I I’ll use another interesting technique to solve that one: the
accumulator.

Nicolas Höning Tutorium to Introduction to AI, 3rd week - Nicolas Höning



topics
organizational issues

some random tips and tricks
Gauss reconsidered

the fruits of left recursion
accumulators

gauss(-X,+Y)

I ok, now what about gauss(-X,+Y)? Can we do it the same
way?

I the problem is: we cannot decrement Y just as easy as X. X
was decremented by one, Y would be decremented by an X we
don’t yet know.

I I’ll use another interesting technique to solve that one: the
accumulator.

Nicolas Höning Tutorium to Introduction to AI, 3rd week - Nicolas Höning



topics
organizational issues

some random tips and tricks
Gauss reconsidered

the fruits of left recursion
accumulators

gauss(-X,+Y)

I ok, now what about gauss(-X,+Y)? Can we do it the same
way?

I the problem is: we cannot decrement Y just as easy as X. X
was decremented by one, Y would be decremented by an X we
don’t yet know.

I I’ll use another interesting technique to solve that one: the
accumulator.

Nicolas Höning Tutorium to Introduction to AI, 3rd week - Nicolas Höning



topics
organizational issues

some random tips and tricks
Gauss reconsidered

the fruits of left recursion
accumulators

accumulators: why?

I ok, the problem again: if we have Y but no X, we cannot
decrement Y till we reach zero, because we don’t know by
what we should decrement. We only have an X parameter that
should hold the X we are looking for but is not instantiated

I well... we could instantiate X with zero and increment it by
one with every step. Then we could decrement Y by that X
and if it comes down to zero, we incremented X up to the one
we were looking for!

I But if we instantiate X with zero in the first place, we will
never get to see that incremented X that comes up in the
base case :-(

I so how about introducing another dummy parameter?

Nicolas Höning Tutorium to Introduction to AI, 3rd week - Nicolas Höning



topics
organizational issues

some random tips and tricks
Gauss reconsidered

the fruits of left recursion
accumulators

accumulators: why?

I ok, the problem again: if we have Y but no X, we cannot
decrement Y till we reach zero, because we don’t know by
what we should decrement. We only have an X parameter that
should hold the X we are looking for but is not instantiated

I well... we could instantiate X with zero and increment it by
one with every step. Then we could decrement Y by that X
and if it comes down to zero, we incremented X up to the one
we were looking for!

I But if we instantiate X with zero in the first place, we will
never get to see that incremented X that comes up in the
base case :-(

I so how about introducing another dummy parameter?

Nicolas Höning Tutorium to Introduction to AI, 3rd week - Nicolas Höning



topics
organizational issues

some random tips and tricks
Gauss reconsidered

the fruits of left recursion
accumulators

accumulators: why?

I ok, the problem again: if we have Y but no X, we cannot
decrement Y till we reach zero, because we don’t know by
what we should decrement. We only have an X parameter that
should hold the X we are looking for but is not instantiated

I well... we could instantiate X with zero and increment it by
one with every step. Then we could decrement Y by that X
and if it comes down to zero, we incremented X up to the one
we were looking for!

I But if we instantiate X with zero in the first place, we will
never get to see that incremented X that comes up in the
base case :-(

I so how about introducing another dummy parameter?

Nicolas Höning Tutorium to Introduction to AI, 3rd week - Nicolas Höning



topics
organizational issues

some random tips and tricks
Gauss reconsidered

the fruits of left recursion
accumulators

accumulators: why?

I ok, the problem again: if we have Y but no X, we cannot
decrement Y till we reach zero, because we don’t know by
what we should decrement. We only have an X parameter that
should hold the X we are looking for but is not instantiated

I well... we could instantiate X with zero and increment it by
one with every step. Then we could decrement Y by that X
and if it comes down to zero, we incremented X up to the one
we were looking for!

I But if we instantiate X with zero in the first place, we will
never get to see that incremented X that comes up in the
base case :-(

I so how about introducing another dummy parameter?

Nicolas Höning Tutorium to Introduction to AI, 3rd week - Nicolas Höning



topics
organizational issues

some random tips and tricks
Gauss reconsidered

the fruits of left recursion
accumulators

accumulators: what?

I an accumulator is a name for another technique while using
recursion.
It adresses just this problem we had by introducing another
parameter that is instantiated empty (say, [] or 0).

I this parameter is then recursively changed until the base case
is reached.

I there the parameter we want to instantiate with the solution
(here: X) is instantiated with the accumulator, passed up the
recursion tree, and we’re done.

I This technique does no harm to the efficiency of your program
(you’ll find it again in that chapter 6 I talked about earlier).

Nicolas Höning Tutorium to Introduction to AI, 3rd week - Nicolas Höning



topics
organizational issues

some random tips and tricks
Gauss reconsidered

the fruits of left recursion
accumulators

accumulators: what?

I an accumulator is a name for another technique while using
recursion.
It adresses just this problem we had by introducing another
parameter that is instantiated empty (say, [] or 0).

I this parameter is then recursively changed until the base case
is reached.

I there the parameter we want to instantiate with the solution
(here: X) is instantiated with the accumulator, passed up the
recursion tree, and we’re done.

I This technique does no harm to the efficiency of your program
(you’ll find it again in that chapter 6 I talked about earlier).

Nicolas Höning Tutorium to Introduction to AI, 3rd week - Nicolas Höning



topics
organizational issues

some random tips and tricks
Gauss reconsidered

the fruits of left recursion
accumulators

accumulators: what?

I an accumulator is a name for another technique while using
recursion.
It adresses just this problem we had by introducing another
parameter that is instantiated empty (say, [] or 0).

I this parameter is then recursively changed until the base case
is reached.

I there the parameter we want to instantiate with the solution
(here: X) is instantiated with the accumulator, passed up the
recursion tree, and we’re done.

I This technique does no harm to the efficiency of your program
(you’ll find it again in that chapter 6 I talked about earlier).

Nicolas Höning Tutorium to Introduction to AI, 3rd week - Nicolas Höning



topics
organizational issues

some random tips and tricks
Gauss reconsidered

the fruits of left recursion
accumulators

accumulators: what?

I an accumulator is a name for another technique while using
recursion.
It adresses just this problem we had by introducing another
parameter that is instantiated empty (say, [] or 0).

I this parameter is then recursively changed until the base case
is reached.

I there the parameter we want to instantiate with the solution
(here: X) is instantiated with the accumulator, passed up the
recursion tree, and we’re done.

I This technique does no harm to the efficiency of your program
(you’ll find it again in that chapter 6 I talked about earlier).

Nicolas Höning Tutorium to Introduction to AI, 3rd week - Nicolas Höning



topics
organizational issues

some random tips and tricks
Gauss reconsidered

the fruits of left recursion
accumulators

gauss(-X,+Y)

I ok, let’s do this: Z is our accumulator:
gauss with Y 2( ,Y, ) :- Y < 0, !, fail.

gauss with Y 2(X,0,X).
gauss with Y 2(X,Y,Z) :-

Z1 is Z + 1,
Y1 is Y - Z1,
gauss with Y 2(X,Y1,Z1).

I we’ll add it up from zero to the value that X should have.
Then we unify it with X and pass X up the recursion tree

I we’re back to good old right recursion again

Nicolas Höning Tutorium to Introduction to AI, 3rd week - Nicolas Höning



topics
organizational issues

some random tips and tricks
Gauss reconsidered

the fruits of left recursion
accumulators

gauss(-X,+Y)

I ok, let’s do this: Z is our accumulator:
gauss with Y 2( ,Y, ) :- Y < 0, !, fail.

gauss with Y 2(X,0,X).
gauss with Y 2(X,Y,Z) :-

Z1 is Z + 1,
Y1 is Y - Z1,
gauss with Y 2(X,Y1,Z1).

I we’ll add it up from zero to the value that X should have.
Then we unify it with X and pass X up the recursion tree

I we’re back to good old right recursion again

Nicolas Höning Tutorium to Introduction to AI, 3rd week - Nicolas Höning



topics
organizational issues

some random tips and tricks
Gauss reconsidered

the fruits of left recursion
accumulators

gauss(-X,+Y)

I ok, let’s do this: Z is our accumulator:
gauss with Y 2( ,Y, ) :- Y < 0, !, fail.

gauss with Y 2(X,0,X).
gauss with Y 2(X,Y,Z) :-

Z1 is Z + 1,
Y1 is Y - Z1,
gauss with Y 2(X,Y1,Z1).

I we’ll add it up from zero to the value that X should have.
Then we unify it with X and pass X up the recursion tree

I we’re back to good old right recursion again

Nicolas Höning Tutorium to Introduction to AI, 3rd week - Nicolas Höning



topics
organizational issues

some random tips and tricks
Gauss reconsidered

the fruits of left recursion
accumulators

gauss(-X,+Y): cleaning up

I ok, the user probably doesn’t want to call
gauss with Y2(X,5050,0).

I /* gauss with Y(-X,+Y)
this pipes the problem to our
special accumulator predicate */
gauss with Y(X,Y) :-

gauss with Y 2(X,Y,0).

Nicolas Höning Tutorium to Introduction to AI, 3rd week - Nicolas Höning



topics
organizational issues

some random tips and tricks
Gauss reconsidered

the fruits of left recursion
accumulators

gauss(-X,+Y): cleaning up

I ok, the user probably doesn’t want to call
gauss with Y2(X,5050,0).

I /* gauss with Y(-X,+Y)
this pipes the problem to our
special accumulator predicate */
gauss with Y(X,Y) :-

gauss with Y 2(X,Y,0).

Nicolas Höning Tutorium to Introduction to AI, 3rd week - Nicolas Höning



topics
organizational issues

some random tips and tricks
Gauss reconsidered

the fruits of left recursion
accumulators

gauss(X,Y): cleaning up

I and now we let the user call gauss(X,Y) and find out ourselves
if X is in there or Y is:

I gauss(X,Y) :-
number(X),
gauss with X(X,Y).

gauss(X,Y) :-
number(Y),
gauss with Y(X,Y).

Nicolas Höning Tutorium to Introduction to AI, 3rd week - Nicolas Höning



topics
organizational issues

some random tips and tricks
Gauss reconsidered

the fruits of left recursion
accumulators

gauss(X,Y): cleaning up

I and now we let the user call gauss(X,Y) and find out ourselves
if X is in there or Y is:

I gauss(X,Y) :-
number(X),
gauss with X(X,Y).

gauss(X,Y) :-
number(Y),
gauss with Y(X,Y).

Nicolas Höning Tutorium to Introduction to AI, 3rd week - Nicolas Höning



topics
organizational issues

some random tips and tricks
Gauss reconsidered

the fruits of left recursion
accumulators

the end

I questions?

Nicolas Höning Tutorium to Introduction to AI, 3rd week - Nicolas Höning


	topics
	organizational issues
	some random tips and tricks
	built-in predicates are not for free
	base cases: "once" vs "every time"

	Gauss reconsidered
	the fruits of left recursion
	accumulators


